

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)

Head and Neck Cancers

Version 2.2014

NCCN.org

Continue

Comprehensive NCCN Guidelines Version 2.2014 Panel Members Cancer Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

- David G. Pfister, MD † Þ/Chair Memorial Sloan-Kettering Cancer Center
- * Sharon Spencer, MD §/Vice-Chair University of Alabama at Birmingham Comprehensive Cancer Center

David M. Brizel, MD § Duke Cancer Institute

Barbara A. Burtness, MD † Fox Chase Cancer Center

Paul M. Busse, MD, PhD §
Massachusetts General Hospital
Cancer Center

Jimmy J. Caudell, MD, PhD §
Moffitt Cancer Center

Anthony J. Cmelak, MD § Vanderbilt-Ingram Cancer Center

A. Dimitrios Colevas, MD † Stanford Cancer Institute

Frank Dunphy, MD †
Duke Cancer Institute

David W. Eisele, MD ¶
The Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins

Jill Gilbert, MD †
Vanderbilt-Ingram Cancer Center

Maura L. Gillison, MD, PhD †
The Ohio State University Comprehensive
Cancer Center - James Cancer Hospital
and Solove Research Institute

- † Medical oncology
- ¶ Surgery/Surgical oncology
- § Radiation oncology
- ζ Otolaryngology
- Þ Internal medicine
- * Writing Committee Member

Robert I. Haddad, MD †
Dana-Farber/Brigham and Women's Cancer Center

Bruce H. Haughey, MBChB, MS ¶
Siteman Cancer Center at Barnes-Jewish Hospital
and Washington University School of Medicine

Wesley L. Hicks, Jr., MD ¶
Roswell Park Cancer Institute

Ying J. Hitchcock, MD § Huntsman Cancer Institute at the University of Utah

Antonio Jimeno, MD, PhD †
University of Colorado Cancer Center

Merrill S. Kies, MD †
The University of Texas
MD Anderson Cancer Center

William M. Lydiatt, MD ¶ ζ UNMC Eppley Cancer Center at The Nebraska Medical Center

Ellie Maghami, MD \P ζ City of Hope Comprehensive Cancer Center

Renato Martins, MD, MPH †
Fred Hutchinson Cancer Research Center/
Seattle Cancer Care Alliance

Thomas McCaffrey, MD, PhD ζ Moffitt Cancer Center

Loren K. Mell, MD §
UC San Diego Moores Cancer Center

Continue

Bharat B. Mittal, MD §
Robert H. Lurie Comprehensive Cancer
Center of Northwestern University

Harlan A. Pinto, MD † ▷ Stanford Cancer Institute

John A. Ridge, MD, PhD ¶ Fox Chase Cancer Center

Cristina P. Rodriguez, MD †
Fred Hutchinson Cancer Research Center/
Seattle Cancer Care Alliance

Sandeep Samant, MD ¶
St. Jude Children's Research Hospital/
University of Tennessee Health Science
Center

David E. Schuller, MD ¶
The Ohio State University Comprehensive
Cancer Center - James Cancer Hospital
and Solove Research Institute

Jatin P. Shah, MD, PhD ¶
Memorial Sloan-Kettering Cancer Center

Randal S. Weber, MD ¶
The University of Texas
MD Anderson Cancer Center

Gregory T. Wolf, MD $\P \zeta$ University of Michigan Comprehensive Cancer Center

Frank Worden, MD †
University of Michigan
Comprehensive Cancer Center

Sue S. Yom, MD, PhD §
UCSF Helen Diller Family
Comprehensive Cancer Center

NCCN

Lauren Gallagher, RPh, PhD Miranda Hughes, PhD Nicole McMillian, MS

NCCN Guidelines Panel Disclosures

Comprehensive NCCN Guidelines Version 2.2014 Sub-Committees Cancer Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

Mucosal Melanoma

William M. Lydiatt, MD ¶ ζ/Lead UNMC Eppley Cancer Center at The Nebraska Medical Center

Jatin P. Shah, MD, PhD ¶
Memorial Sloan-Kettering Cancer Center

Principles of Systemic Therapy
Barbara A. Burtness, MD †
Fox Chase Cancer Center

A. Dimitrios Colevas, MD † Stanford Cancer Institute

Frank Dunphy, MD †
Duke Cancer Institute

Robert I. Haddad, MD †
Dana-Farber/Brigham and Women's Cancer
Center

Renato Martins, MD, MPH †
Fred Hutchinson Cancer Research
Center/Seatte Cancer Care Alliance

Frank Worden, MD †
University of Michigan
Comprehensive Cancer Center

Principles of Nutrition

A. Dimitrios Colevas, MD †/Lead Stanford Cancer Institute

Paul M. Busse, MD, PhD §
Massachusetts General Hospital
Cancer Center

Ying J. Hitchcock, MD §
Huntsman Cancer Institute
at the University of Utah

Gregory T. Wolf, MD \P ζ University of Michigan Comprehensive Cancer Center

Principles of Radiation Therapy
Sharon Spencer, MD §/Lead
University of Alabama at Birmingham
Comprehensive Cancer Center

David Brizel, MD §
Duke Cancer Institute

Paul M. Busse, MD, PhD §
Massachusetts General Hospital
Cancer Center

Jimmy J. Caudell, MD, PhD § Moffitt Cancer Center

Anthony J. Cmelak, MD § Vanderbilt-Ingram Cancer Center

Ying J. Hitchcock, MD § Huntsman Cancer Institute at the University of Utah

Loren K. Mell, MD § UC San Diego Moores Cancer Center

Bharat B. Mittal, MD §
Robert H. Lurie Comprehensive Cancer
Center of Northwestern University

Sue S. Yom, MD, PhD § UCSF Helen Diller Family Comprehensive Cancer Center

Continue

NCCN Guidelines Panel Disclosures

Principles of Surgery
Gregory T. Wolf, MD ¶ ζ/Lead
University of Michigan
Comprehensive Cancer Center

David M. Brizel, MD §
Duke Cancer Institute

David W. Eisele, MD ¶
The Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins

William M. Lydiatt, MD ¶ ζ UNMC Eppley Cancer Center at The Nebraska Medical Center

John A. Ridge, MD, PhD ¶ Fox Chase Cancer Center

Sandeep Samant, MD ¶
St. Jude Children's Research Hospital/
University of Tennessee Health Science
Center

David E. Schuller, MD ¶
The Ohio State University Comprehensive
Cancer Center James Cancer Hospital and
Solove Research Institute

Randal S. Weber, MD ¶
The University of Texas
MD Anderson Cancer Center

Principles of Dental Evaluation and Management Frank Worden, MD † University of Michigan Comprehensive Cancer Center

† Medical oncology

 ζ Otolaryngology

¶ Surgery/Surgical oncology Þ Internal medicine

§ Radiation oncology

Comprehensive NCCN Guidelines Version 2.2014 Table of Contents Cancer Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

NCCN Head Neck Cancers Panel Members

NCCN Head and Cancers Sub-Committee Members

Summary of the Guidelines Updates

- Multidisciplinary Team and Support Services (TEAM-1)
- Cancer of the Lip (LIP-1)
- Cancer of the Oral Cavity (OR-1)
- Cancer of the Oropharynx (ORPH-1)
- Cancer of the Hypopharynx (HYPO-1)
- Cancer of the Nasopharynx (NASO-1)
- Cancer of the Glottic Larynx (GLOT-1)
- Cancer of the Supraglottic Larynx (SUPRA-1)
- Ethmoid Sinus Tumors (ETHM-1)
- Maxillary Sinus Tumors (MAXI-1)
- Very Advanced Head and Neck Cancer (ADV-1)
- Recurrent/Persistent Head and Neck Cancer (ADV-2)
- Occult Primary (OCC-1)
- Salivary Gland Tumors (SALI-1)
- Mucosal Melanoma (MM-1)
- Follow-up Recommendations (FOLL-A)
- Principles of Surgery (SURG-A)
- Radiation Techniques (RAD-A)
- Principles of Systemic Therapy (CHEM-A)
- Principles of Nutrition: Management and Supportive Care (NUTR-A)
- Principles of Dental Evaluation and Management (DENT-A)

Clinical Trials: NCCN believes that the best management for any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN Member Institutions, <u>click here:</u> <u>nccn.org/clinical_trials/physician.html</u>.

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise specified.

See NCCN Categories of Evidence and Consensus.

Staging (ST-1)

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient's care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2014.

Comprehensive NCCN Guidelines Version 2.2014 Updates Cancer Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

Updates in Version 2.2014 of the NCCN Guidelines for Head and Neck Cancer from Version 1.2014 include:

FOLL-A

• Follow-up: First bullet revised, "H&P exam (including a complete head and neck exam; mirror and fiberoptic examination as clinically indicated)..."

MS-1

• The Discussion section has been updated to reflect the changes in the algorithm.

Updates in Version 1.2014 of the NCCN Guidelines for Head and Neck Cancer from Version 2.2013 include:

Global Changes

- The following footnotes were added to the "Workup" section for all cancer sites and to the Follow-up Recommendations (FOLL-A) page:
- ➤ Smoking cessation counseling as clinically indicated. All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.
- ➤ Screen for depression (See NCCN Guidelines for Distress Management).
- The "Principles of Radiation" section for all cancer sites was extensively revised including dosing and the following footnotes:
- ➤ For doses >70 Gy, some clinicians feel that the fractionation should be slightly modified (eg, <2.0 Gy/fraction for at least some of the treatment) to minimize toxicity. *An additional 2-3 doses can be added depending on clinical circumstances*.
- ➤ Suggest 44-54 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-60 54-63 Gy with IMRT due to dose painting technique (dependent upon dose per fraction).
- The "Principles of Dental Evaluation and Management" is a new section that provides recommendations for evaluating and managing head and neck cancer patients before, during, and after they have received radiation therapy (<u>DENT-A</u>). The new section is footnoted in the Workup section of sites that recommend dental evaluation.

Support and Services

TEAM-1

• Links to the <u>NCCN Guidelines for Adult Cancer Pain</u> and <u>Distress</u> Management were added.

Cancer of the Lip

LIP-1

- Workup:
- ➤ First bullet revised: "...mirror and/or fiberoptic examination..."
- ➤ Fourth bullet, Second arrow revised: "CT and/or MRI of primary and neck as indicated".
- ➤ Fifth bullet revised: "Preanesthesia studies as clinically indicated."

Cancer of the Oral Cavity

OR-1

- Workup:
- ➤ Third bullet revised: "Chest imaging as clinically indicated".
- ➤ Seventh bullet revised: "Preanesthesia studies as clinically indicated".

<u>OR-2</u>

- T1-2, N0; Treatment of Primary and Neck:
- ➤ Recommendation revised: "Resection of primary (preferred)
 ± ipsilateral (guided by tumor thickness) or bilateral (guided by
 location of primary) neck dissection (guided by tumor thickness)".
- ➤ A new treatment pathway for "Resection of primary ± sentinel lymph node (SLN) biopsy" was added.
- T1-2, N0; Adjuvant Treatment: For patients with "One positive node without adverse features" recommendation revised: "Consider RT optional (category 2B)".

 UPDATES

Continued 1 of 6

Comprehensive NCCN Guidelines Version 2.2014 Updates **Head and Neck Cancers**

NCCN Guidelines Index Head and Neck Table of Contents Discussion

Cancer of the Oropharynx

ORPH-1

• Workup; Fourth bullet revised: "Chest imaging as clinically indicated".

ORPH-2

- T1-2, N0-1; Treatment of Primary and Neck: Recommendation revised, "Transoral or open resection of primary ± ipsilateral or bilateral neck dissection".
- > The pathway, "One positive node without adverse features" was removed.

ORPH-3

- T3-4a, N0-1; Treatment of Primary and Neck: Recommendation revised, "Transoral or open resection surgery for primary and neck". • Carcinoma in situ; Treatment of Primary and Neck: Revised, **ORPH-4**
- Any T,N2-3; Treatment of Primary and Neck: Recommendation revised, "Transoral or open resection surgery: Primary and neck." ➤ Node listing revised, "N1, N2a-b, N3."

Cancer of the Hypopharynx

HYPO-1

- Workup:
- ➤ Third bullet revised: "Chest imaging as clinically indicated".
- > Seventh bullet revised, "Preanesthesia studies as clinically indicated".
- ➤ New bullet added: "Consider pulmonary function tests for conservation surgery candidates."
- ➤ Bullet removed: "Consider videostrobe for select patients."

HYPO-3

• Clinical Staging revised: "Selected T2, N0 or T2-3, any N if requiring [amenable to] pharyngectomy with total laryngectomy); T1, N+."

HYPO-4

- Clinical Stage revised: "Response after induction chemotherapy for selected T2, N0; T2-3 any N or T1, N+."
- Response Assessment
- ➤ Revised: "Primary site: Complete response (CR) and stable or improved disease in neck".
- ➤ Revised: "Primary site: Partial response (PR) and stable or improved disease in neck".

Cancer of the Nasopharynx NASO-A

 Footnote "2" is new: "Care should be taken to avoid critical neural structures; therefore, 1.8 Gy/fraction can be considered".

Cancer of the Glottic Larynx

GLOT-1

- Workup:
- ➤ Third bullet revised: "Chest imaging as clinically indicated".
- ➤ New bullet added: "Consider pulmonary function tests for conservation surgery candidates."

GLOT-2

- "Endoscopic resection (preferred)".
- Amenable to larynx-preserving (conservation) surgery (T1-T2 N0 or select T3); Treatment of Primary and Neck; "Partial laryngectomy..." pathway:
- > The pathway for "One positive node (if neck dissection is done without adverse features)" was removed along with corresponding footnote, "Nodal disease is rare."
- ➤ Adverse features
 - ♦ Revised: "Extracapsular spread +/- positive margin."
 - Positive margins; Adjuvant treatment: "Consider chemo/RT (for ≥ T2 patients)" removed as an option.
 - ♦ Other risk features: "Consider chemo/RT" removed as an option.

GLOT-3

• T3 requiring (amenable to) total laryngectomy (N0-1); Treatment of Primary and Neck: "Induction chemotherapy (category 2B)" added as an option.

Comprehensive NCCN Guidelines Version 2.2014 Updates Cancer Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

Cancer of the Glottic Larynx GLOT-4

• T3 requiring (amenable to) total laryngectomy (N2-3): Induction chemotherapy changed from category 3 to category 2A.

GLOT-5

- Response after induction chemotherapy; Response Assessment:
- ➤ Primary site: Complete response: "Consider chemo/RT (category 2B)" was removed as an option.
- ➤ Primary site: Partial response: "RT (category 1)" was added as an option.

GLOT-6

 Selected T4a patients who decline surgery; Treatment of Primary and Neck: Induction chemotherapy changed from a category 2B to category 2A recommendation.

Cancer of the Supraglottic Larynx SUPRA-1

- Workup:
- ➤ Third bullet revised: "Chest imaging as clinically indicated".
- ➤ New bullet added: "Consider pulmonary function tests for conservation surgery candidates."

SUPRA-2

 Amenable to larynx-preserving (conservation) surgery (T1-T2 N0 or select T3); Pathologic stage: For "Positive node; Adverse features: Positive margins" the adjuvant treatment recommendation "Consider chemo/RT" changed from a category 2B to a category 2A. SUPRA-3

- Requiring (amenable to) total laryngectomy (T3, N0):
- ➤ Treatment of Primary and Neck: Induction chemotherapy changed from a category 3 to category 2A.
- ➤ Adjuvant Treatment: For patients with "N0 or one positive node without adverse features," recommendation revised, "Consider RT optional."

<u>Cancer of the Supraglottic Larynx</u>---continued SUPRA-5

 Amenable to larynx-preserving (conservation) surgery (T1-2, N+ and selected T3, N1); Treatment of Primary and Neck: Induction chemotherapy changed from a category 3 to a category 2A.

SUPRA-6

 Requiring (amenable to) total laryngectomy (Most T3, N2-N3);
 Treatment of Primary and Neck: Induction chemotherapy changed from category 2B to category 2A.

SUPRA-7

- Response after induction chemotherapy:
- ➤ Primary site: Complete response: "Consider chemo/RT (category 2B)" was removed as an option.
- ➤ Primary site: Partial Response: "RT (category 1)" was added as an option.

SUPRA-8

 T4a, N0-N3 patients who decline surgery; Treatment of Primary and Neck: Induction chemotherapy changed from category 2B to category 2A.

SUPRA-A

• Footnote "2" is new: "For select T1-2, N0 tumors, accelerated fractionation may be used."

Comprehensive NCCN Guidelines Version 2.2014 Updates Cancer Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

Ethmoid Sinus Tumors

ETHM-1

- Workup:
- ➤ Fourth bullet revised: "Chest imaging as clinically indicated".
- ➤ New bullet added: "Consider PET/CT for Stage III or IV."

ETHM-2

• Footnote "i" revised: "Pathologic features: negative margins, favorable histology, central tumors, low-grade tumors."

Maxillary Sinus Tumors

MAXI-1

- Workup:
- ➤ Fourth bullet revised: "Chest imaging as clinically indicated."

MAXI-2

- T1-2, N0; All histologies except adenoid cystic; Surgical resection:
- ➤ Perineural invasion; Adjuvant Treatment: Recommendation revised, "Consider chemo/RT (category 2B)."
- ▶ Margin positive: Recommendation revised, "RT or Chemo/RT (category 2B)."

MAXI-3

 Adjuvant Treatment: For "T3-T4a, N0" and "T1-T4a, N+" patients with adverse features, the recommendation was revised, "RT or Consider chemo/RT to primary and neck (category 2B)."

Very Advanced Head and Neck Cancer ADV-2

- Recurrent or Persistent disease; Locoregional recurrence; Unresectable: Best supportive care was added as an option. ADV-3
- Recurrent or Persistent Disease; Distant metastases; Standard therapy; PS 0-1: Best supportive care was added as an option.

Occult Primary

OCC-1

• Footnote "e" revised: "Whether HPV or EBV positive status may help to define the radiation fields is being investigated (See Principles of Surgery [SURG-A 2 of 7] and Discussion).

OCC-2

- Pathologic findings; Node level I, II, III, upper V; Workup: Third bullet revised, "Biopsy of areas of clinical concern and tonsillectomy ± lingual tonsillectomy."
- Footnote "g" is new: "Enrollment in a clinical trial to determine the efficacy of lingual tonsillectomy is strongly encouraged to assess patient outcomes.

Salivary Gland Tumors

SALI-1

- Workup: Third bullet revised: "Chest imaging as clinically indicated". SALI-A
- Footnote removed: "Range based on grade/natural history of disease (eg, 1.8 Gy fraction may be used for slower growing tumors)."

Mucosal Melanoma

<u>MM-1</u>

• Workup: Fourth bullet revised: "Chest imaging as *clinically* indicated".

MM-4

- The pathways entitled, "Level V; occipital node" and "All other nodal sites" were combined into one and is now called, "Nodal basin".
- Footnote removed: "RT is indicated for satellitosis, positive nodes, or extracapsular spread."

MM-A

• Footnote "2" is new: "For recurrences in nodal basin after previous surgery, optional dose schedules include 48-50 Gy (2.4-3.0Gy/fraction), 30Gy(6Gy/fraction)."

Comprehensive NCCN Guidelines Version 2.2014 Updates **Head and Neck Cancers**

NCCN Guidelines Index Head and Neck Table of Contents Discussion

FOLL-A Follow-up Recommendations

- Second bullet; First arrow revise: "Further reimaging as indicated based on signs/symptoms; not routinely recommended for asymptomatic patients without worrisome signs/symptoms."
- Eighth bullet revised: "Consider EBV/DNA monitoring for nasopharyngeal cancer."

SURG-A Principles of Surgery 1 of 9

• Assessment of Resectability; Statement revised: "...obtain clear margins). None of these sites of involvement are absolute contraindications to resection in selected patients in whom total cancer removal is possible:"

2 of 9

- Primary Tumor Resection
- > Fifth bullet: "... The goal is total cancer resection. When gross invasion is suspected present and the nerve can be resected without significant morbidity, the nerve should be dissected both proximally and distally and should be resected to obtain clearance of disease (See Management of Cranial Nerves page 4 of 9)."
- ➤ Sixth bullet: "...Segmental or marginal resection should be considered in tumors that grossly involve mandibular periosteum (as determined by tumor fixation to the mandible) or show evidence of direct tumor involvement of the bone at the time of operation or through preoperative imaging (CT/MRI/Panorex)."
- to the principles of complete tumor extirpation with curative intent and function preservation."
- > New bullet added: "Medullary space invasion is an indication for segmental resection; Frozen section examination of available marrow may be considered to guide resection."
- > New bullet added: "Transoral robotic or laser-assisted resections of primary cancers in the oral cavity, larynx and pharynx are increasingly used approaches for cancer resection in selected patients with limited disease and accessible tumors. Oncologic principles are similar to open procedures. Successful application of these techniques requires specialized skills and experience."

SURG-A Principles of Surgery

3 of 9

- Margins:
- > First paragraph: New sentence added at the end, "If positive surgical margins are reported, surgical re-resection and/or adjuvant therapy should be considered in selected patients."
- ▶ First bullet revised, "...palpable normal mucosa). However, for glottic cancers, a 1-2 mm. margin is considered adequate. In general, frozen section examination of the margins will usually be undertaken intraoperatively, and importantly, when a line of resection has uncertain clearance because of indistinct tumor margins, or there is suspected residual disease (ie, soft tissue, cartilage, carotid artery, or mucosal irregularity). In transoral laser microsurgery, margins of 1.5-2.0 mm may be achieved with the goal of complete tumor resection with maximal normal tissue preservation. With this approach, adequacy of resection may be uncertain and is assessed under high magnification and confirmed intraoperatively by frozen sections. 3 Such margins would be considered "close" and may be inadequate for certain sites such as oral tongue."

5 of 9

 Neck Management: Sentence revised, "Patients with advanced lesions involving the anterior tongue, or floor of the mouth or lip that approximate or cross the midline..."

6 of 9

▶ Eighth bullet: "... will be decided by the surgeon but should adhere • This is a new section that provides recommendations for sentinel lymph node biopsy.

8 of 9

- Persistent disease or progression: Recommendation revised, "To assess extent of disease or distant metastases: Consider CT and/or MRI with contrast (4-8 weeks)..."
- "If response" pathway: Recommendation revised, "To assess extent of disease or distant metastases: PET/CT..."

Comprehensive NCCN Guidelines Version 2.2014 Updates Cancer Network® Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

RAD-A Radiation Techniques 1 of 3

 New footnote "*" added: "The American College of Radiology Guidelines are available and provide additional technical references http://www.acr.org/Quality-Safety/Appropriateness-Criteria/Oncology/Head-Neck."

2 of 3

- Palliative Radiation
- ➤ First bullet revised: "Palliative radiation should be considered in the advanced cancer setting when curative-intent treatment is not appropriate."
- ➤ Second bullet:
 - Second sentence revised, "...palliative RT should be considered for relief or prevention of locoregional symptoms if the RT toxicities are acceptable.
 - New arrow bullet added, "44.4 Gy in 12 fractions, in 3 cycles (for each cycle, give 2 fractions six hours apart for 2 days in a row, and treatments must exclude the spinal cord after second cycle)."
 - Arrow bullet regarding recommended RT regimens removed: "60 Gy in 30 fractions"
- ➤ New bullet added, "While the use of shorter treatment courses is encouraged, the dose tolerance of the spinal cord and neural structures must be evaluated carefully in light of fraction size."

3 of 3

 New reference added: Paris KJ, Spanos WJ Jr, Lindberg RD, et al. Phase I-II study of multiple daily fractions for palliation of advanced head and neck malignancies. Int J Radiat Oncol Biol Phys 1993;25:657-660.

<u>CHEM-A</u> Principles of Systemic Therapy 1 of 5

- First bullet revised: "The standard therapy chemoradiotherapy approach for fit patients with locally advanced disease remains concurrent cisplatin and radiotherapy."
- Second bullet revised: "...Randomized phase III studies comparing sequential chemotherapy/RT to concurrent chemotherapy/RT alone are ongoing and have not demonstrated a convincing survival benefit with the incorporation of induction chemotherapy."

<u>CHEM-A</u> Principles of Systemic Therapy---continued 1 of 5

- Squamous Cell Cancers:
- ➤ Nasopharynx
 - Chemoradiation followed by adjuvant chemotherapy:
 - "Cisplatin + RT followed by cisplatin/5-FU" changed from category 1 to category 2A.
 - Cisplatin + RT followed by carboplatin/5-FU" changed from category 2A to category 2B.
 - "Cisplatin + RT without adjuvant chemotherapy" was added as an option.
- Nasopharynx
- ➤ Induction/Sequential chemotherapy
 - For "Induction/Sequential chemotherapy," "Induction" changed from category 2A to category 3.
 - ♦ Docetaxel/cisplatin (category 2B) was added as an option.
- New footnote "*" regarding induction therapy added: "The categories of evidence and consensus for induction therapy vary depending on site (See disease specific site in the Head and Neck Table of Contents)."
- Footnote regarding induction therapy was removed: "Induction chemotherapy should only be done in a tertiary setting."

2 of 5

- Recurrent, Unresectable, or Metastatic (incurable)
- ➤ Combination therapy:
 - "Cisplatin/docetaxel/cetuximab (non-nasopharyngeal)" added as an option.
 - Cisplatin/paclitaxel/cetuximab (non-nasopharyngeal)" added as an option.
 - "Cisplatin/gemcitabine (nasopharyngeal)" added as an option.
- ➤ Single agents:
 - ♦ Ifosfamide changed from category 2A to category 2B.
 - Bleomycin changed from category 2A to category 2B.

NUTRA-A Principles of Nutrition

 Assessment and Management; Nutrition; Second arrow; Third sentence revised: "Regular follow-up with the registered dietitian should continue at least until the patient has achieved a nutritionally stable baseline following treatment.

Denetit with the incorporation of induction chemotherapy."

stable baseline following treatment.

Version 2.2014, 05/30/14 © National Comprehensive Cancer Network, Inc. 2014, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.

Comprehensive NCCN Guidelines Version 2.2014 **Team Approach**

MULTIDISCIPLINARY TEAM

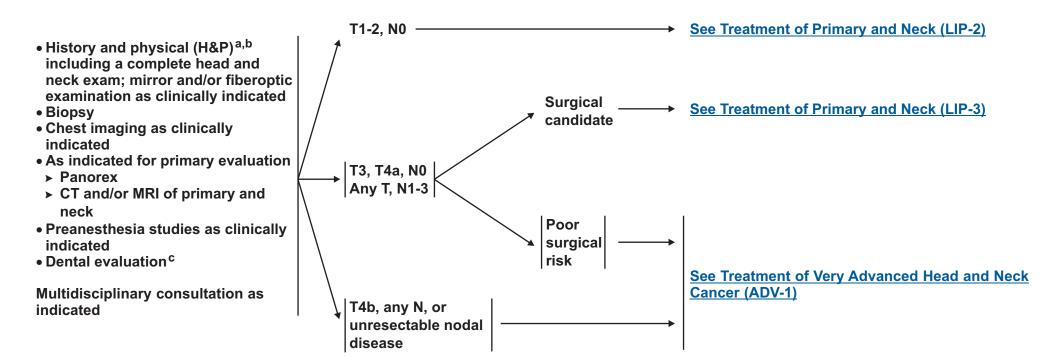
The management of patients with head and neck cancers is complex. All patients need access to the full range of support services and specialists with expertise in the management of patients with head and neck cancer for optimal treatment and follow-up.

- Head and neck surgery
- Radiation oncology
- Medical oncology
- Plastic and reconstructive surgery
- Specialized nursing care
- Dentistry/prosthodontics
- Physical medicine and rehabilitation
- Speech and swallowing therapy
- Clinical social work
- Nutrition support

- Pathology (including cytopathology)
- Diagnostic radiology
- Adjunctive services
- Neurosurgery
- ➤ Ophthalmology
- ➤ Psychiatry
- > Addiction services
- ➤ Audiology
- ➤ Palliative care

SUPPORT AND SERVICES

Follow-up should be performed by a physician and other health care professionals with expertise in the management and prevention of treatment sequelae. It should include a comprehensive head and neck exam. The management of head and neck cancer patients may involve the following:


- General medical care
- Pain and symptom management (See NCCN Guidelines for Adult Cancer • Tracheotomy care Pain)
- Nutritional support
- ➤ Enteral feeding
- ➤ Oral supplements
- Dental care for RT effects
- Xerostomia management
- Smoking and alcohol cessation

- Speech and swallowing therapy
- Audiology
- Wound management
- Depression assessment and management (See NCCN Guidelines for Distress Management)
- Social work and case management
- Supportive care (See NCCN Guidelines for Palliative Care)

Note: All recommendations are category 2A unless otherwise indicated.

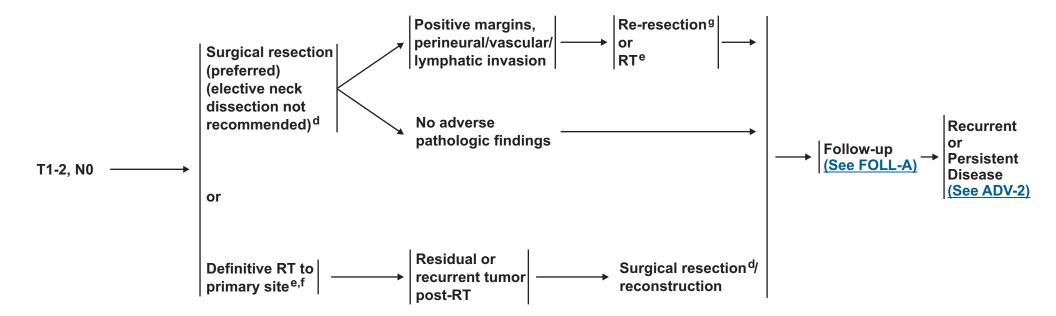
WORKUP

CLINICAL STAGING

Note: All recommendations are category 2A unless otherwise indicated.

^aSmoking cessation counseling as clinically indicated. All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.

^bScreen for depression (<u>See NCCN Guidelines for Distress Management</u>).

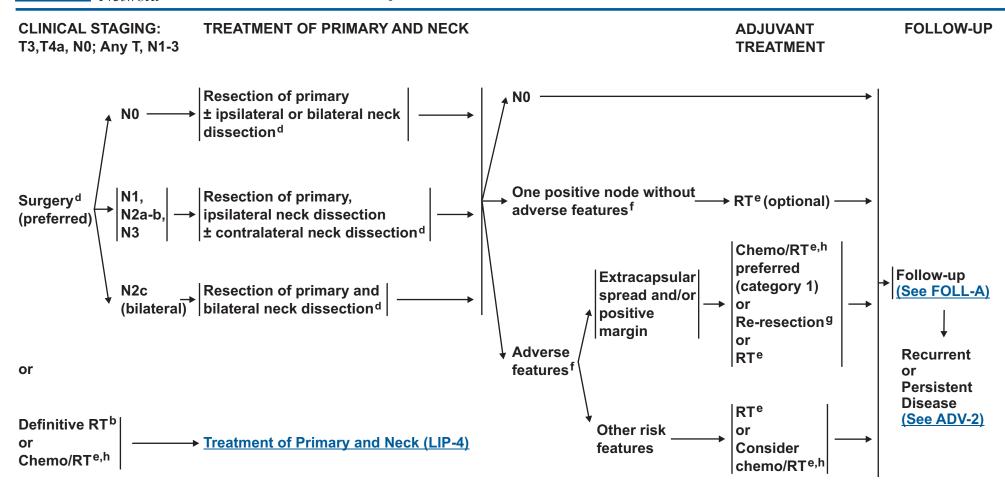

^cSee Principles of Dental Evaluation and Management (DENT-A).

CLINICAL STAGING

TREATMENT OF PRIMARY AND NECK

ADJUVANT TREATMENT

FOLLOW-UP


Note: All recommendations are category 2A unless otherwise indicated.

d See Principles of Surgery (SURG-A).

^eSee Principles of Radiation Therapy (LIP-A).

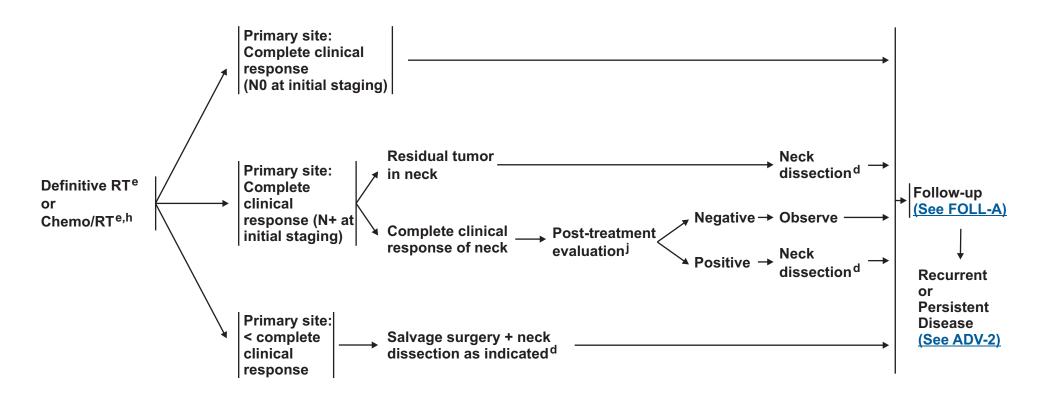
^fNo elective treatment to neck is preferred for the T1-2, N0.

^gConsider re-resection to achieve negative margins, if feasible.

Note: All recommendations are category 2A unless otherwise indicated.

^dSee Principles of Surgery (SURG-A).

^eSee Principles of Radiation Therapy (LIP-A).


^gConsider re-resection to achieve negative margins, if feasible.

^hSee Principles of Systemic Therapy (CHEM-A).

ⁱAdverse features: extracapsular nodal spread, positive margins, multiple positive nodes, or perineural/lymphatic/vascular invasion.

CLINICAL STAGING: T3, T4a, N0; Any T, N1-3 TREATMENT OF PRIMARY AND NECK

ADJUVANT TREATMENT **FOLLOW-UP**

Note: All recommendations are category 2A unless otherwise indicated.

^eSee Principles of Radiation Therapy (LIP-A).

^hSee Principles of Systemic Therapy (CHEM-A).

^dSee Principles of Surgery (SURG-A).

jSee Post Chemoradiation or RT Neck Evaluation (SURG-A 8 of 9).

NCCN Guidelines Index Head and Neck Table of Contents Discussion

PRINCIPLES OF RADIATION THERAPY¹

DEFINITIVE:

RT Alone

- Planning target volume (PTV)
- > High risk: Primary tumor and involved lymph nodes (this includes possible local subclinical infiltration at the primary site and at the .PTV high-risk level lymph node(s))
 - ♦ 66 Gy (2.2 Gy/fraction) to 70 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-7 weeks²
- ► Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³
- External beam RT (EBRT) ± brachytherapy^{4,5}
- Brachytherapy
- ► Interstitial brachytherapy is considered for selected cases.^{4,5}
 - ♦ Low-dose rate (LDR) brachytherapy (0.4-0.5 Gy per hour):
 - Consider LDR boost 20-35 Gy if combined with 50 Gy EBRT or 60-70 Gy over several days if using LDR as sole therapy
 - High-dose rate (HDR) brachytherapy:
 - Consider HDR boost 21 Gy at 3 Gy/fraction if combined with 40-50 Gy EBRT or 45-60 Gy at 3-6 Gy/fraction if using HDR as sole therapy.

POSTOPERATIVE:

RT

- Preferred interval between resection and postoperative RT is <6 weeks.
- ➤ High risk: Adverse features such as positive margins (see footnote i on LIP-3)
 - ♦ 60-66 Gy (2.0 Gy/fraction) daily Monday-Friday in 6-6.5 weeks
- ➤ Low to intermediate risk: Sites of suspected subclinical spread
- 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³

Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended.

Note: All recommendations are category 2A unless otherwise indicated.

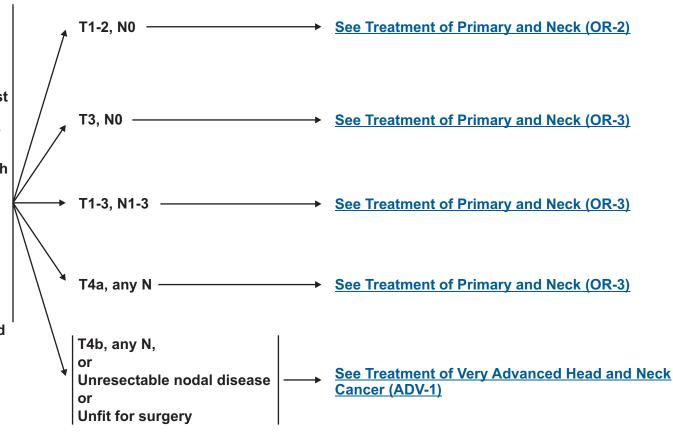
¹See Radiation Techniques (RAD-A) and Discussion.

²For doses >70 Gy, some clinicians feel that the fractionation should be slightly modified (eg. <2.0 Gy/fraction for at least some of the treatment) to minimize toxicity. An additional 2-3 doses can be added depending on clinical circumstances.

³Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁴Brachytherapy should be performed at centers where there is expertise in this modality. (Nag S. Cano ER. Demanes DJ. et al. The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for head-neck carcinomas. Int J Radiat Oncol Biol Phys 2001;50:1190-1198; and Mazeron JJ, Ardiet JM, Hale-Meder C, et al. GEC-ESTRO recommendations for brachytherapy for head and neck squamous cell carcinoma. Radiother Oncol 2009;91:150-156.)

⁵The interval between EBRT and brachytherapy should be as short as possible (1-2 weeks) depending on recovery from acute toxicity. The interval between HDR fractions should be at least 6 hours.


Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Cancer of the Oral Cavity

Buccal mucosa, floor of mouth, anterior tongue, alveolar ridge, retromolar trigone, hard palate

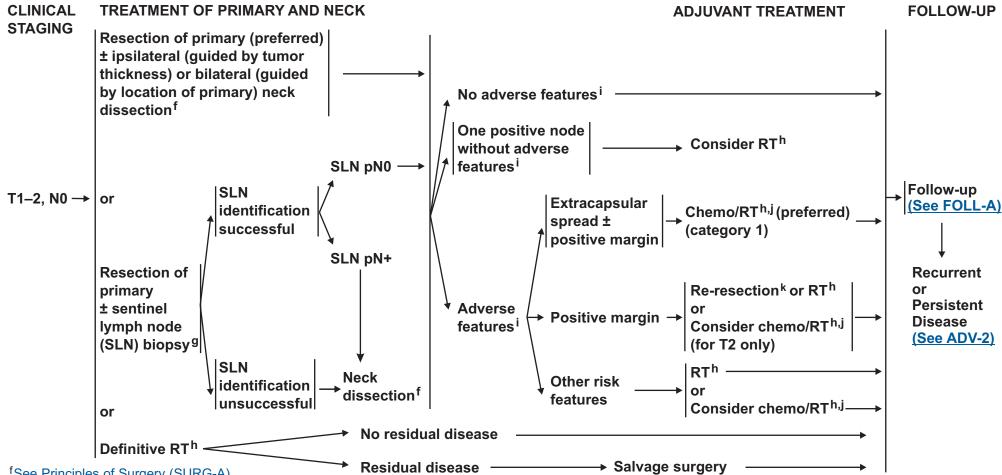
WORKUP CLINICAL STAGING

- H&P^{a,b} including a complete head and neck exam; mirror and fiberoptic examination as clinically indicated
- Biopsy
- Chest imaging as clinically indicated
- CT with contrast and/or MRI with contrast of primary and neck as indicated
- Consider positron emission tomography (PET)-CT for stage III-IV disease^c
- Examination under anesthesia (EUA) with endoscopy, if indicated
- Preanesthesia studies as clinically indicated
- Dental/prosthodontic evaluation,^d including jaw imaging as clinically indicated
- Nutrition, speech and swallowing evaluation/therapy as indicated^e

Multidisciplinary consultation as indicated

^aSmoking cessation counseling as clinically indicated. All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.

Note: All recommendations are category 2A unless otherwise indicated.


^bScreen for depression (See NCCN Guidelines for Distress Management)

^cSee Discussion.

dSee Principles of Dental Evaluation and Management (DENT-A).

eSee Principles of Nutrition: Management and Supportive Care (NUTR-A).

Buccal mucosa, floor of mouth, anterior tongue, alveolar ridge, retromolar trigone, hard palate

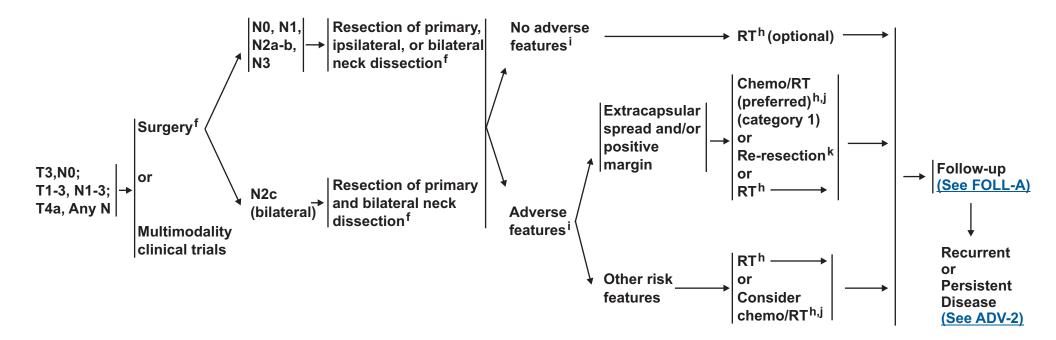
fSee Principles of Surgery (SURG-A).

Note: All recommendations are category 2A unless otherwise indicated.

^gSee Sentinel Lymph Node Biopsy in Principles of Surgery [SURG-A 6 of 9].

hPrinciples of Radiation Therapy (OR-A).

ⁱAdverse risk features: extracapsular nodal spread, positive margins, pT3 or pT4 primary, N2 or N3 nodal disease, nodal disease in levels IV or V, perineural invasion, vascular embolism (See Discussion).


See Principles of Systemic Therapy (CHEM-A).

^kConsider re-resection to achieve negative margins, if feasible.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Cancer of the Oral Cavity

Buccal mucosa, floor of mouth, anterior tongue, alveolar ridge, retromolar trigone, hard palate

CLINICAL TREATMENT OF PRIMARY AND NECK ADJUVANT FOLLOW-UP STAGING TREATMENT

Note: All recommendations are category 2A unless otherwise indicated.

fSee Principles of Surgery (SURG-A).

^hSee Principles of Radiation Therapy (OR-A).

ⁱAdverse risk features: extracapsular nodal spread, positive margins, pT3 or pT4 primary, N2 or N3 nodal disease, nodal disease in levels IV or V, perineural invasion, vascular embolism (See Discussion).

See Principles of Systemic Therapy (CHEM-A).

^kConsider re-resection to achieve negative margins, if feasible.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY¹

DEFINITIVE:

RT Alone

- PTV:
- ▶ High risk: Primary tumor and involved lymph nodes (this includes possible local subclinical infiltration at the primary site and at the high-risk level lymph node(s)):
 - Fractionation:
 - **8** 66 Gy (2.2 Gy/fraction) to 70 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-7 weeks²
 - **№ 66-70 Gy (2.0 Gy/fraction; 6 fractions/week accelerated)**
 - Concomitant boost accelerated RT: 72 Gy/6 weeks (1.8 Gy/fraction, large field; 1.5 Gy boost as second daily fraction during last 12 treatment days)
 - Hyperfractionation: 81.6 Gy/7 weeks (1.2 Gy/fraction, twice daily)
- ▶ Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³
- Brachytherapy
- ▶ Interstitial brachytherapy is considered for selected cases. 4,5
 - **♦ LDR brachytherapy (0.4-0.5 Gy per hour):**
 - Consider LDR boost 20-35 Gy if combined with 50 Gy EBRT or 60-70 Gy over several days if using LDR as sole therapy.
 - HDR brachytherapy:
 - Consider HDR boost 21 Gy at 3 Gy/fraction if combined with 40-50 Gy EBRT or 45-60 Gy at 3-6 Gy/fraction if using HDR as sole therapy.

For unresectable disease, see ADV-1.

Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended.

Note: All recommendations are category 2A unless otherwise indicated.

¹See Radiation Techniques (RAD-A) and Discussion.

²For doses >70 Gy, some clinicians feel that the fractionation should be slightly modified (eg, <2.0 Gy/fraction for at least some of the treatment) to minimize toxicity. An additional 2-3 doses can be added depending on clinical circumstances.

³Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁴Brachytherapy should be performed at centers where there is expertise in this modality. (Nag S, Cano ER, Demanes DJ, et al. The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for head-neck carcinomas. Int J Radiat Oncol Biol Phys. 2001;50:1190-1198; and Mazeron JJ, Ardiet JM, Hale-Meder C, et al., GEC-ESTRO recommendations for brachytherapy for head and neck squamous cell carcinoma. Radiother Oncol 2009;91:150-156.)

⁵The interval between EBRT and brachytherapy should be as short as possible (1-2 weeks) depending on recovery from acute toxicity. The interval between HDR fractions should be at least 6 hours.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Cancer of the Oral Cavity

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY¹

POSTOPERATIVE:

RT

- Preferred interval between resection and postoperative RT is ≤6 weeks.
- PTV
- ▶ High risk: Adverse features such as positive margins (see footnote i on OR-3)
 - ♦ 60-66 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-6.5 weeks
- ▶ Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³

POSTOPERATIVE CHEMORADIATION

• Concurrent single-agent cisplatin at 100 mg/m² every 3 weeks is recommended. 6-9

Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended.

Note: All recommendations are category 2A unless otherwise indicated.

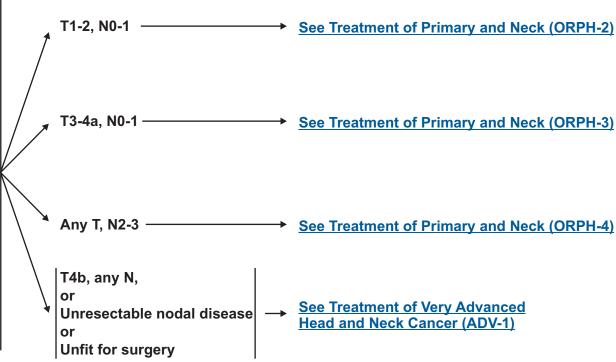
¹See Radiation Techniques (RAD-A) and Discussion.

³Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁶Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 2004;350:1945-1952.

⁷Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 2004;350:1937-1944.

⁸Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (#9501). Head Neck 2005;27:843-850.


⁹Cooper JS, Zhang Q, Pajak TF et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2012;84:1198-1205

Base of tongue/tonsil/posterior pharyngeal wall/soft palate WORKUP

H&P^{a,b} including a complete head and neck exam; mirror and fiberoptic examination as clinically indicated

- Biopsy
- Tumor human papilloma virus (HPV) testing recommended c
- Chest imaging as clinically indicated
- CT with contrast and/or MRI with contrast of primary and neck
- Consider PET-CT^d for stage III-IV disease
- Dental evaluation, e including panorex as clinically indicated
- Nutrition, speech and swallowing evaluation/therapy, and audiogram as clinically indicated^f
- EUA with endoscopy as clinically indicated
- Pre-anesthesia studies

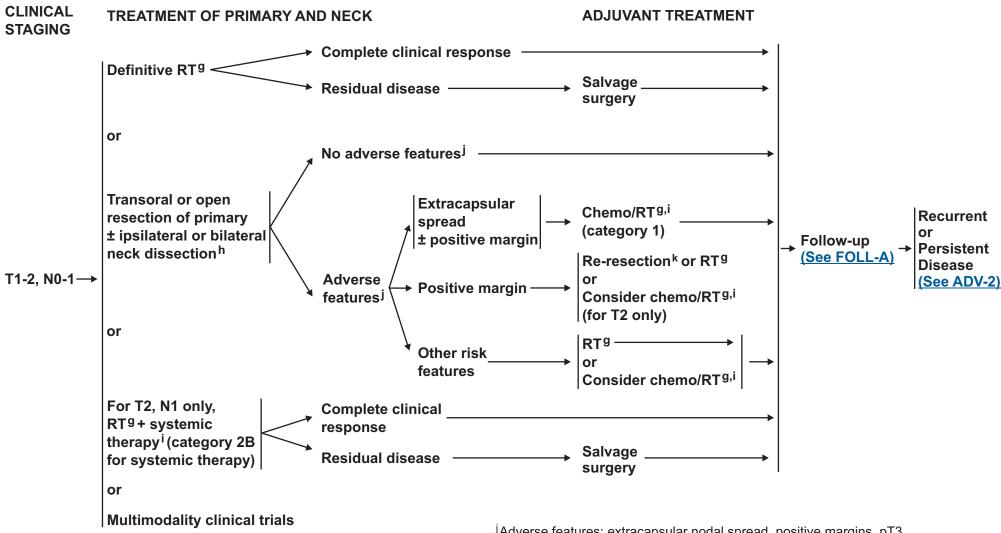
Multidisciplinary consultation as clinically indicated

^aSmoking cessation counseling as clinically indicated. All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.

CLINICAL STAGING

Note: All recommendations are category 2A unless otherwise indicated.

bScreen for depression (See NCCN Guidelines for Distress Management).


^cEither immunohistochemistry for analysis of p16 expression or HPV in situ hybridization for detection of HPV DNA in tumor cell nuclei is recommended. Although not used to guide treatment, HPV testing is valuable prognostically. The results of HPV testing should not change management decisions except in the context of a clinical trial.

^dAnatomical imaging is also recommended.

eSee Principles of Dental Evaluation and Management (DENT-A).

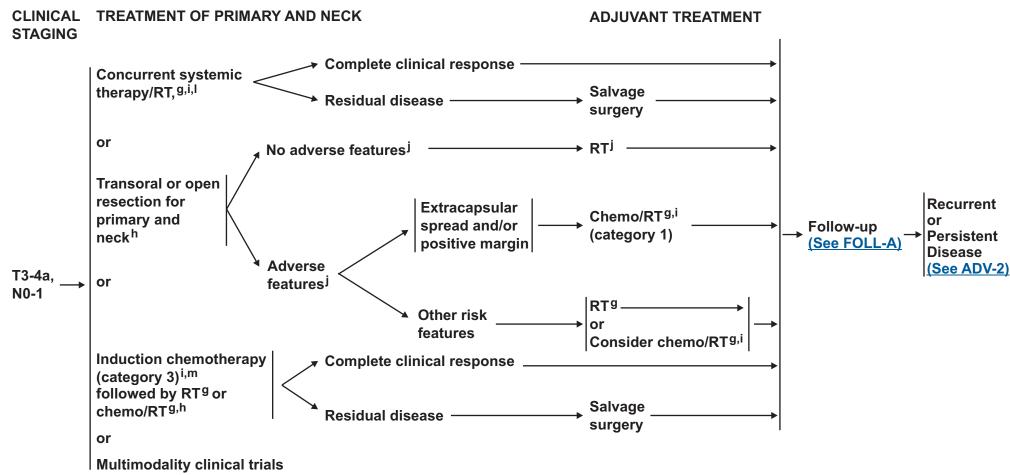
fSee Principles of Nutrition: Management and Supportive Care (NUTR-A).

Base of tongue/tonsil/posterior pharyngeal wall/soft palate

⁹See Principles of Radiation Therapy (ORPH-A).

See Principles of Systemic Therapy (CHEM-A).

^jAdverse features: extracapsular nodal spread, positive margins, pT3 or pT4 primary, N2 or N3 nodal disease, nodal disease in levels IV or V, perineural invasion, vascular embolism (See Discussion).


Note: All recommendations are category 2A unless otherwise indicated.

^hSee Principles of Surgery (SURG-A).

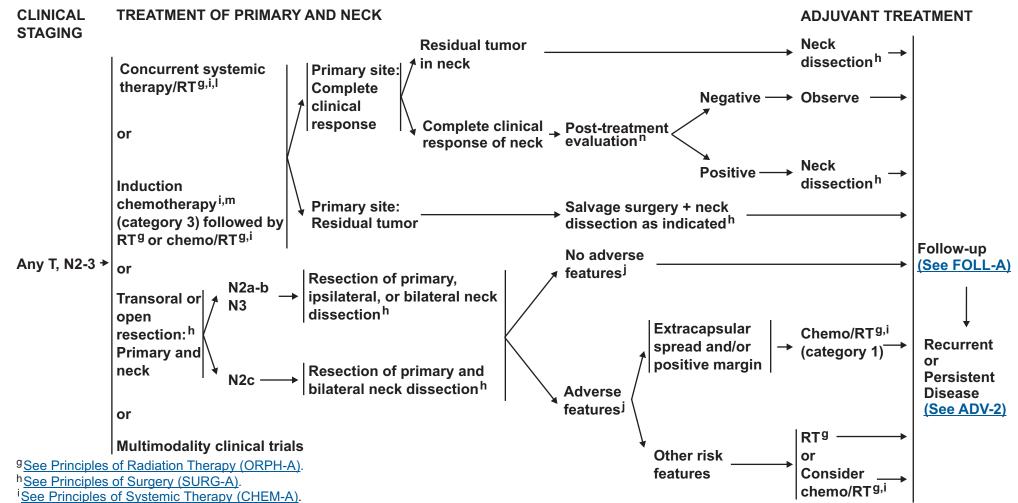
^kConsider re-resection to achieve negative margins, if feasible.

Base of tongue/tonsil/posterior pharyngeal wall/soft palate

⁹See Principles of Radiation Therapy (ORPH-A).

Note: All recommendations are category 2A unless otherwise indicated.

^hSee Principles of Surgery (SURG-A).


See Principles of Systemic Therapy (CHEM-A).

^jAdverse features: extracapsular nodal spread, positive margins, pT3 or pT4 primary, N2 or N3 nodal disease, nodal disease in levels IV or V, perineural invasion, vascular embolism (<u>See Discussion</u>).

When using concurrent chemotherapy/RT, the preferred agent is cisplatin (category 1). See Principles of Systemic Therapy (CHEM-A).

^mSee <u>Discussion</u> on induction chemotherapy.

Base of tongue/tonsil/posterior pharyngeal wall/soft palate

JAdverse features: extracapsular nodal spread, positive margins, pT3 or pT4 primary, N2 or N3 nodal disease, nodal disease in levels IV or V, perineural invasion, vascular embolism (See Discussion).

Note: All recommendations are category 2A unless otherwise indicated.

¹When using concurrent chemotherapy/RT, the preferred agent is cisplatin (category 1). See Principles of Systemic Therapy (CHEM-A).

^mSee Discussion on induction chemotherapy.

ⁿSee Post Chemoradiation or RT Neck Evaluation (SURG-A 8 of 9).

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY¹

DEFINITIVE:

RT Alone

• PTV

- ➤ High risk: Primary tumor and involved lymph nodes (this includes possible local subclinical infiltration at the primary site and at the high-risk level lymph node(s)
 - Fractionation:
 - 66 Gy (2.2 Gy/fraction) to 70 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-7 weeks²
 - 66-70 Gy (2.0 Gy/fraction; 6 fractions/week accelerated)
 - Concomitant boost accelerated RT: 72 Gy/6 weeks
 - (1.8 Gy/fraction, large field; 1.5 Gy boost as second daily fraction during last 12 treatment days)
 - Hyperfractionation: 81.6 Gy/7 weeks
 - (1.2 Gy/fraction, twice daily)
- ▶ Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³

CONCURRENT CHEMORADIATION 4,5

• PTV:

- ➤ High risk: typically 70 Gy (2.0 Gy/fraction)
- ▶ Low to intermediate risk: 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³

Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended for cancers of the oropharynx in order to minimize dose to critical structures, especially the parotid glands.

Note: All recommendations are category 2A unless otherwise indicated.

¹See Radiation Techniques (RAD-A) and Discussion.

²For doses >70 Gy, some clinicians feel that the fractionation should be slightly modified (eg, <2.0 Gy/fraction for at least some of the treatment) to minimize toxicity. An additional 2-3 doses can be added depending on clinical circumstances.

³Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁴See Principles of Systemic Therapy (CHEM-A).

⁵Based on published data, concurrent chemoradiation most commonly uses conventional fractionation at 2.0 Gy per fraction to a typical dose of 70 Gy in 7 weeks with single-agent cisplatin given every 3 weeks at 100 mg/m²; 2-3 cycles of chemotherapy are used depending on the radiation fractionation scheme (RTOG 0129) (Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010;363:24-35). When carboplatin and 5-FU are used, the recommended regimen is standard fractionation plus 3 cycles of chemotherapy. (Bourhis J, Sire C, Graff P, et al. Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02): an open-label phase 3 randomised trial. Lancet Oncol 2012;13:145-153). Other fraction sizes (eg, 1.8 Gy, conventional), multiagent chemotherapy, other dosing schedules of cisplatin, or altered fractionation with chemotherapy are efficacious, and there is no consensus on the optimal approach. In general, the use of concurrent chemoradiation carries a high toxicity burden; altered fractionation or multiagent chemotherapy will likely further increase the toxicity burden. For any chemoradiation approach, close attention should be paid to published reports for the specific chemotherapy agent, dose, and schedule of administration. Chemoradiation should be performed by an experienced team and should include substantial supportive care.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY¹

POSTOPERATIVE:

RT

- Preferred interval between resection and postoperative RT is ≤6 weeks.
- PTV
- ▶ High risk: Adverse features such as positive margins (See footnote j on ORPH-3).
 - ♦ 60-66 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-6.5 weeks
- ▶ Low to intermediate risk: sites of suspected subclinical spread
 - ♦ 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³

POSTOPERATIVE CHEMORADIATION

• Concurrent single-agent cisplatin at 100 mg/m² every 3 weeks is recommended. 6-9

Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended for cancers of the oropharynx in order to minimize dose to critical structures, especially the parotid glands.

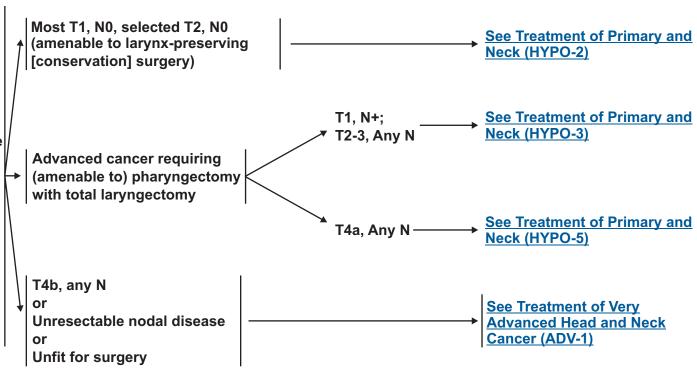
Note: All recommendations are category 2A unless otherwise indicated.

¹See Radiation Techniques (RAD-A) and Discussion.

³Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁶Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 2004;350:1945-1952.

⁷Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 2004;350:1937-1944.


⁸Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (#9501). Head Neck 2005;27:843-850.

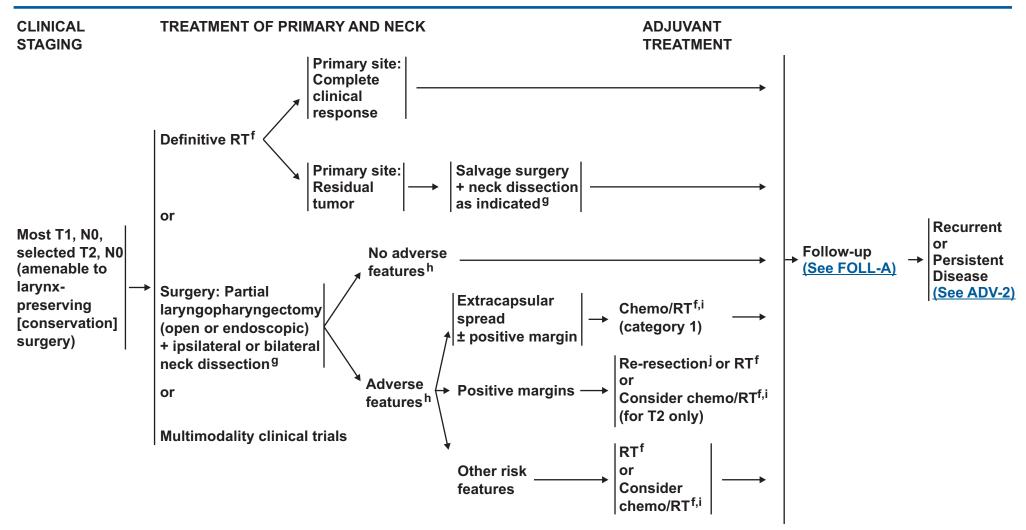
⁹Cooper JS, Zhang Q, Pajak TF et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2012;84:1198-1205.

WORKUP

CLINICAL STAGING

- H&P^{a,b} including a complete head and neck exam; mirror and fiberoptic examination as clinically indicated
- Biopsy
- Chest imaging as clinically indicated
- CT with contrast and/or MRI with contrast of primary and neck
- Consider PET-CT^c for stage III-IV disease
- EUA with endoscopy
- Preanesthesia studies as clinically indicated
- Nutrition, speech and swallowing evaluation/therapy, and audiogram as clinically indicated^d
- Dental evaluation^e
- Consider pulmonary function tests for conservation surgery candidates
 Multidisciplinary consultation
 as clinically indicated

Note: All recommendations are category 2A unless otherwise indicated.

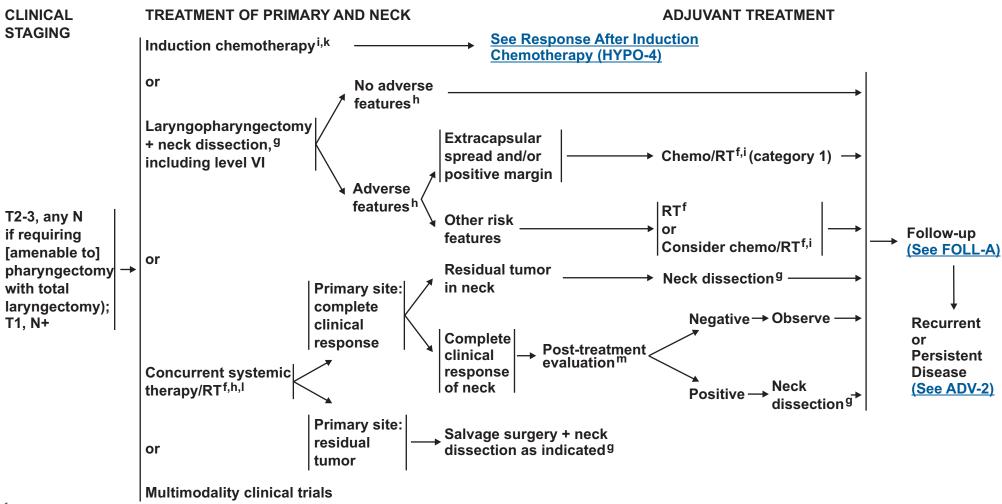

^aSmoking cessation counseling as clinically indicated. All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.

^bScreen for depression (See NCCN Guidelines for Distress Management).

^cAnatomical imaging is also recommended.

d See Principles of Nutrition: Management and Supportive Care (NUTR-A).

^eSee Principles of Dental Evaluation and Management (DENT-A).


fSee Principles of Radiation Therapy (HYPO-A).

Note: All recommendations are category 2A unless otherwise indicated.

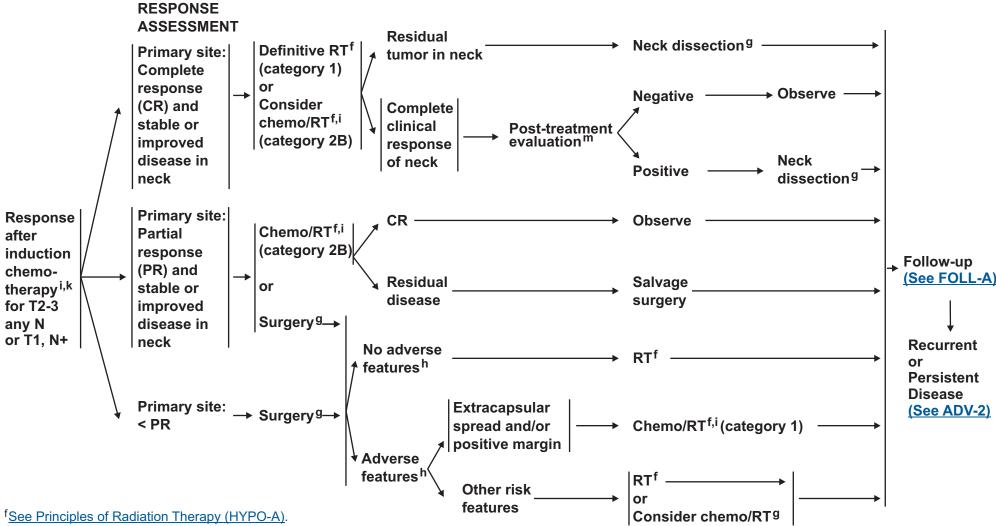
⁹See Principles of Surgery (SURG-A).

hAdverse features: extracapsular nodal spread, positive margins, pT3 or pT4 primary, N2 or N3 nodal disease, perineural invasion, vascular embolism (See Discussion). See Principles of Systemic Therapy (CHEM-A).

^jConsider re-resection to achieve negative margins, if feasible.

fSee Principles of Radiation Therapy (HYPO-A).

Note: All recommendations are category 2A unless otherwise indicated.

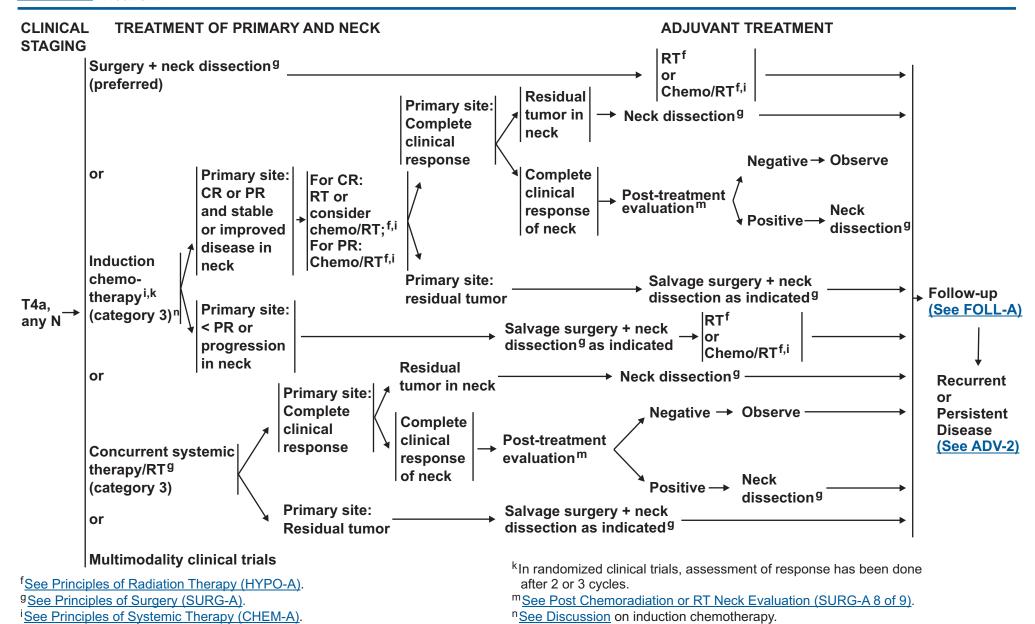

⁹See Principles of Surgery (SURG-A).

hAdverse features: extracapsular nodal spread, positive margins, pT3 or pT4 primary, N2 or N3 nodal disease, perineural invasion, vascular embolism (See Discussion). See Principles of Systemic Therapy (CHEM-A).

kIn randomized clinical trials, assessment of response has been done after 2 or 3 cycles.

When using concurrent chemotherapy/RT, the preferred agent is cisplatin (category 1). See Principles of Systemic Therapy (CHEM-A).

^mSee Post Chemoradiation or RT Neck Evaluation (SURG-A 8 of 9).


Note: All recommendations are category 2A unless otherwise indicated.

⁹See Principles of Surgery (SURG-A).

hAdverse features: extracapsular nodal spread, positive margins, pT3 or pT4 primary, N2 or N3 nodal disease, perineural invasion, vascular embolism (See Discussion). See Principles of Systemic Therapy (CHEM-A).

^kIn randomized clinical trials, assessment of response has been done after 2 or 3 cycles.

^mSee Post Chemoradiation or RT Neck Evaluation (SURG-A 8 of 9).

Note: All recommendations are category 2A unless otherwise indicated.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY^{1,2}

DEFINITIVE:

RT Alone

- PTV
- ➤ High risk: Primary tumor and involved lymph nodes (this includes possible local subclinical infiltration at the primary site and at the high-risk level lymph node(s))
 - **♦** Fractionation:
 - 66 Gy (2.2 Gy/fraction) to 70 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-7 weeks³
 - 66-70 Gy (2.0 Gy/fraction; 6 fractions/week accelerated)
 - Concomitant boost accelerated RT: 72 Gy/6 weeks
 (1.8 Gy/fraction, large field; 1.5 Gy boost as second daily fraction during last 12 treatment days)
 - Hyperfractionation: 81.6 Gy/7 weeks
 - (1.2 Gy/fraction, twice daily)
- > Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)⁴

CONCURRENT CHEMORADIATION 5,6

- PTV
- ➤ High risk: typically 70 Gy (2.0 Gy/fraction)
- ▶ Low to intermediate risk: 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)⁴

Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended.

²Particular attention to speech and swallowing is needed during therapy.

⁴ Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁵ See Principles of Systemic Therapy (CHEM-A).

Note: All recommendations are category 2A unless otherwise indicated.

¹See Radiation Techniques (RAD-A) and Discussion.

³ For doses >70 Gy, some clinicians feel that the fractionation should be slightly modified (eg, <2.0 Gy/fraction for at least some of the treatment) to minimize toxicity. An additional 2-3 doses can be added depending on clinical circumstances.

Based on published data, concurrent chemoradiation most commonly uses conventional fractionation at 2.0 Gy per fraction to a typical dose of 70 Gy in 7 weeks with single-agent cisplatin given every 3 weeks at 100 mg/m²; 2-3 cycles of chemotherapy are used depending on the radiation fractionation scheme (RTOG 0129) (Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010;363:24-35). When carboplatin and 5-FU are used, the recommended regimen is standard fractionation plus 3 cycles of chemotherapy. (Bourhis J, Sire C, Graff P, et al. Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02): an open-label phase 3 randomised trial. Lancet Oncol 2012;13:145-153). Other fraction sizes (eg, 1.8 Gy, conventional), multiagent chemotherapy, other dosing schedules of cisplatin, or altered fractionation with chemotherapy are efficacious, and there is no consensus on the optimal approach. In general, the use of concurrent chemoradiation carries a high toxicity burden; altered fractionation or multiagent chemotherapy will likely further increase the toxicity burden. For any chemoradiation approach, close attention should be paid to published reports for the specific chemotherapy agent, dose, and schedule of administration. Chemoradiation should be performed by an experienced team and should include substantial supportive care.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY^{1,2}

POSTOPERATIVE:

RT

- Preferred interval between resection and postoperative RT is ≤6 weeks.
- PTV
- ➤ High risk: Adverse features such as positive margins (See footnote h on HYPO-3).
 - ♦ 60-66 Gy (2.0 Gy/fraction; daily Monday-Friday) in 6-6.5 weeks
- > Low to intermediate risk: sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)⁴

POSTOPERATIVE CHEMORADIATION

• Concurrent single-agent cisplatin at 100 mg/m² every 3 weeks is recommended.⁷⁻¹⁰

Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended.

Note: All recommendations are category 2A unless otherwise indicated.

¹See Radiation Techniques (RAD-A) and Discussion.

²Particular attention to speech and swallowing is needed during therapy.

⁴Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁷Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 2004;350:1945-1952.

⁸Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 2004;350:1937-1944.

⁹Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (#9501). Head Neck 2005;27:843-850.

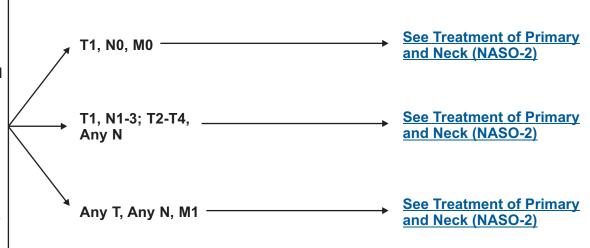
¹⁰Cooper JS, Zhang Q, Pajak TF et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2012;84:1198-1205.

NCCN Guidelines Index Head and Neck Table of Contents Discussion

WORKUP **CLINICAL STAGING**

- H&Pa,b including a complete head and neck exam; mirror examination as clinically indicated
- Nasopharyngeal fiberoptic examination and biopsy
- MRI with gadolinium including base of skull, nasopharynx, and neck to the clavicles

National

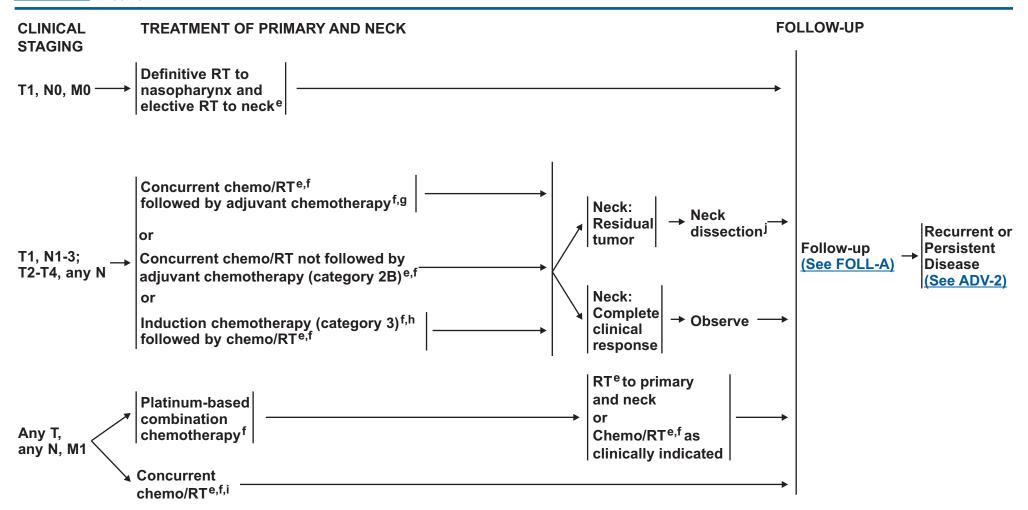

Cancer

Network®

NCCN

- CT of skull base/neck with contrast as clinically indicated
- Imaging of the upper mediastinum/chest as clinically indicated
- Dental, c nutritional, speech and swallowing, and audiology evaluations as clinically indicated d
- Imaging for distant metastases (ie, chest, liver, bone), may include PET/CT and/or other imaging modalities, especially for nonkeratinizing histology, endemic phenotype, or N2-3 disease; may be considered for stage III-IV disease

Multidisciplinary consultation as clinically indicated



Note: All recommendations are category 2A unless otherwise indicated.

^aSmoking cessation counseling as clinically indicated. All current smokers should be advised to guit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.

^bScreen for depression (See NCCN Guidelines for Distress Management). See Principles of Dental Evaluation and Management (DENT-A).

d See Principles of Nutrition: Management and Supportive Care (NUTR-A).

^eSee Principles of Radiation Therapy (NASO-A).

Note: All recommendations are category 2A unless otherwise indicated.

fSee Principles of Systemic Therapy (CHEM-A).

⁹When using concurrent chemotherapy/RT, the preferred agent is cisplatin (category 1). See Principles of Systemic Therapy (CHEM-A).

hSee Discussion on induction chemotherapy.

ⁱCan be used for select patients with distant metastasis in limited site or with small tumor burden, or for patients with symptoms in the primary or any nodal site. ^jSee Principles of Surgery (SURG-A).

PRINCIPLES OF RADIATION THERAPY¹

DEFINITIVE

RT Alone (preferred if no chemotherapy is being used)

- PTV
- ➤ High risk: Primary tumor and involved lymph nodes (this includes possible local subclinical infiltration at the primary site and at the high-risk level lymph node(s))
 - ♦ 66 Gy (2.2 Gy/fraction) to 70 Gy (1.8-2.0 Gy/fraction); daily Monday-Friday in 6-7 weeks²
- Low to intermediate risk: Sites of suspected subclinical spread
- ➤ 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³

CONCURRENT CHEMORADIATION: 4

(preferred for patients eligible for chemotherapy)

- PTV
- ➤ High risk: typically 70 Gy (1.8-2.0 Gy/fraction); daily Monday-Friday in 7 weeks²
- ▶ Low to intermediate risk: 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³

IMRT is preferred over 3-D conformal RT in cancer of the nasopharynx to minimize dose to critical structures.

Note: All recommendations are category 2A unless otherwise indicated.

¹See Radiation Techniques (RAD-A) and Discussion.

²Care should be taken to avoid critical neural structures; therefore, 1.8 Gy/fraction can be considered.

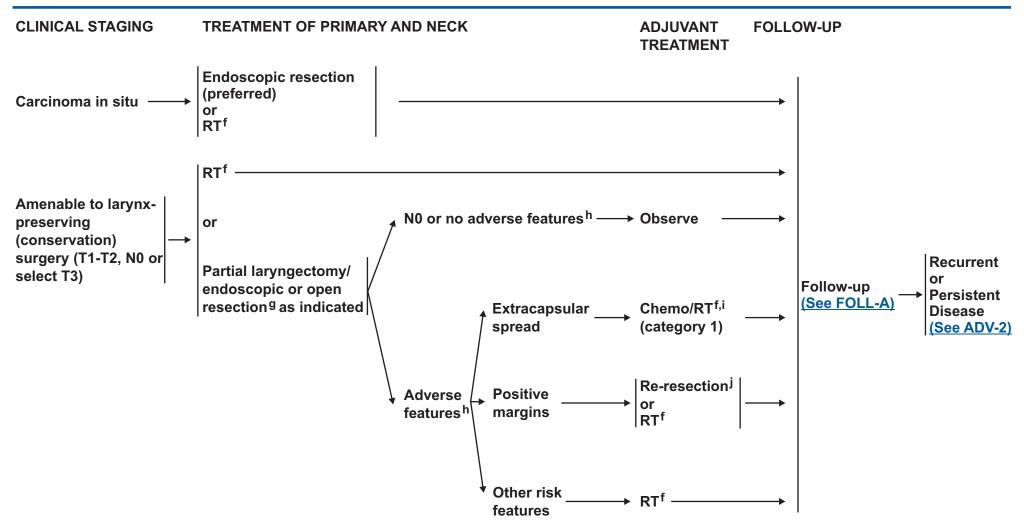
³Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁴See Principles of Systemic Therapy (CHEM-A).

WORKUP^a TREATMENT OF PRIMARY AND NECK CLINICAL STAGING Carcinoma in situ **See Treatment (GLOT-2)** • H&P^{b,c} including a complete head and neck exam; Amenable to larynx-preserving mirror and fiberoptic examination as clinically (conservation) surgery) See Treatment (GLOT-2) indicated (T1-T2, N0 or Select T3) Biopsy Chest imaging as clinically indicated • CT with contrast and thin cuts through larynx and/or T3 requiring (amenable to) **See Treatment of Primary and Neck** MRI of primary and neck total laryngectomy • Consider PET-CT for stage III-IV disease (N0-1) EUA with endoscopy Preanesthesia studies Dental evaluation as clinically indicated^d T3 requiring (amenable to) **See Treatment of Primary and Neck** • Nutrition, speech and swallowing evaluation/therapy, total laryngectomy (GLOT-4) and audiogram as clinically indicated e (N2-3) Consider videostrobe for select patients • Consider pulmonary function tests for conservation **See Treatment of Primary and Neck** surgery candidates T4a disease (GLOT-6) Multidisciplinary consultation as clinically indicated T4b, any N Unresectable nodal **See Treatment of Very Advanced Head and Neck Cancer (ADV-1)** disease or

Unfit for surgery

Note: All recommendations are category 2A unless otherwise indicated.

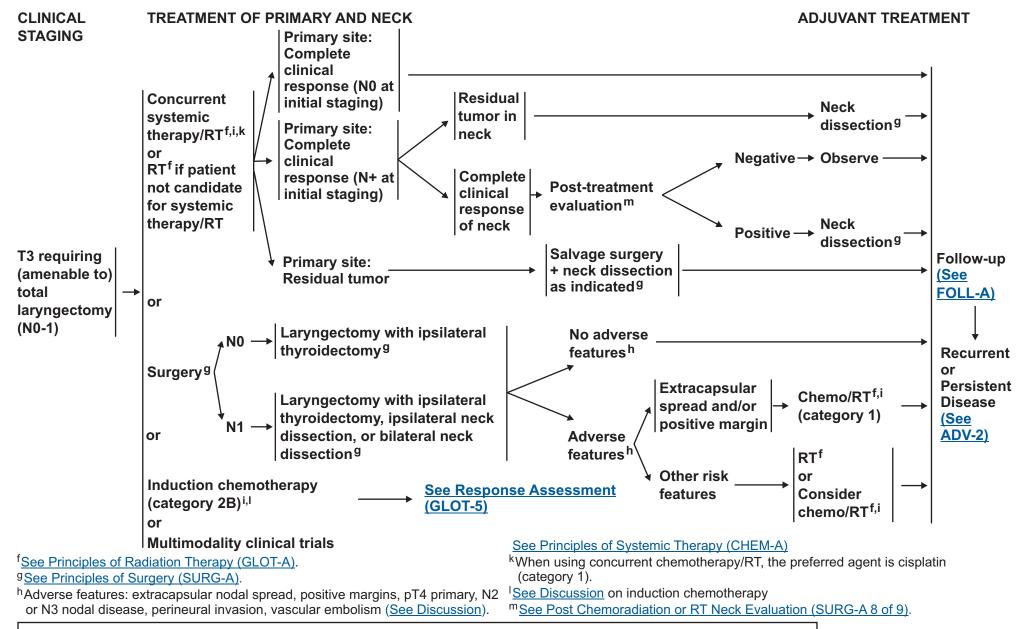

^aComplete workup is not indicated for Tis, T1.

^bSmoking cessation counseling as clinically indicated. All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.

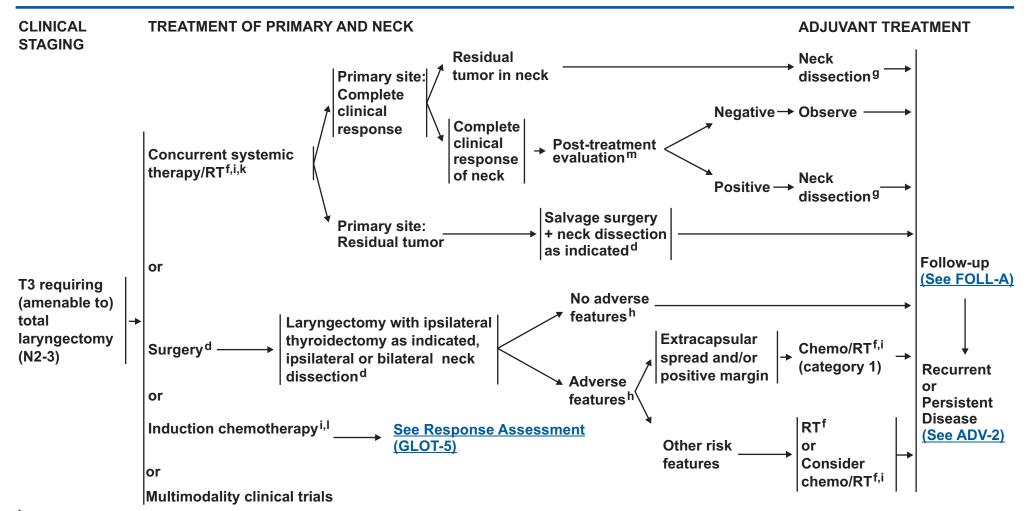
^cScreen for depression (<u>See NCCN Guidelines for Distress Management</u>).

^dSee Principles of Dental Evaluation and Management (DENT-A).

^eSee Principles of Nutrition: Management and Supportive Care (NUTR-A).


fSee Principles of Radiation Therapy (GLOT-A).

Note: All recommendations are category 2A unless otherwise indicated.


⁹See Principles of Surgery (SURG-A).

^hAdverse features: extracapsular nodal spread, positive margins, pT3 or pT4 primary, N2 or N3 nodal disease, perineural invasion, vascular embolism (<u>See Discussion</u>). i<u>See Principles of Systemic Therapy (CHEM-A)</u>.

Consider re-resection to achieve negative margins, if feasible.

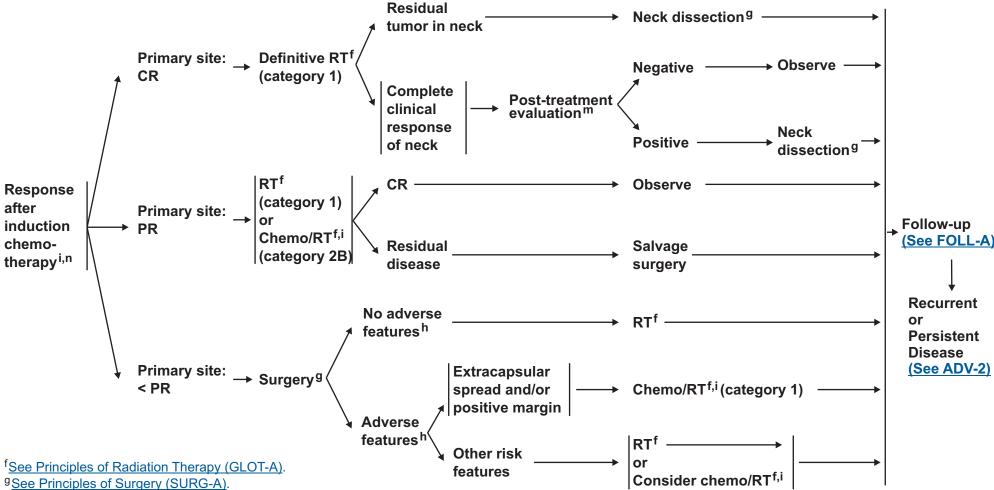
Note: All recommendations are category 2A unless otherwise indicated.

fSee Principles of Radiation Therapy (GLOT-A).

Note: All recommendations are category 2A unless otherwise indicated.

⁹See Principles of Surgery (SURG-A).

hAdverse features: extracapsular nodal spread, positive margins, pT4 primary, N2 or N3 nodal disease, perineural invasion, vascular embolism (See Discussion).


See Principles of Systemic Therapy (CHEM-A).

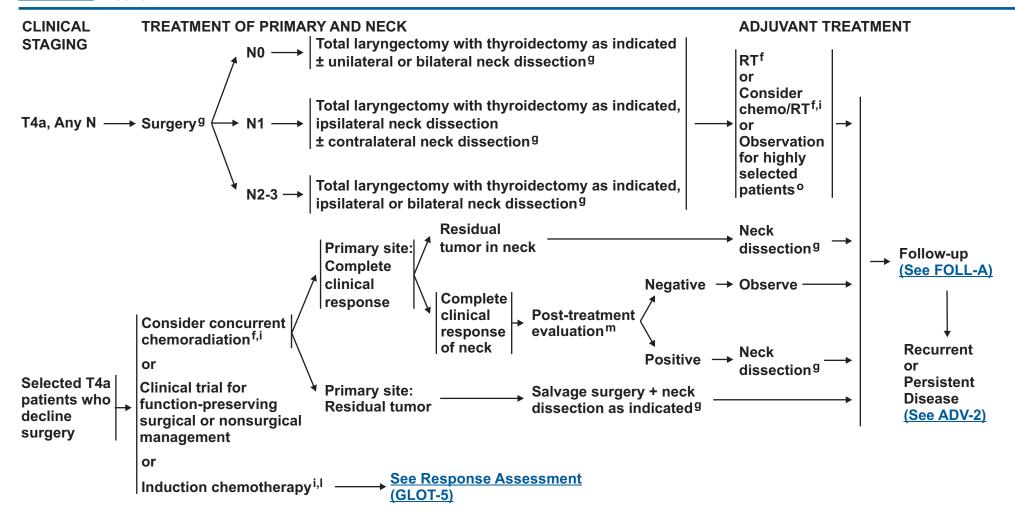
^kWhen using concurrent chemotherapy/RT, the preferred agent is cisplatin (category 1).

See Discussion on induction chemotherapy.

^mSee Post Chemoradiation or RT Neck Evaluation (SURG-A 8 of 9).

RESPONSE ASSESSMENT

ⁿIn randomized clinical trials, assessment of response has been done after 2 or 3 cycles.


Note: All recommendations are category 2A unless otherwise indicated.

See Principles of Systemic Therapy (CHEM-A).

^mSee Post Chemoradiation or RT Neck Evaluation (SURG-A 8 of 9).

hAdverse features: extracapsular nodal spread, positive margins, pT4 primary, N2 or N3 nodal disease, perineural invasion, vascular embolism (See Discussion).

fSee Principles of Radiation Therapy (GLOT-A).

⁹See Principles of Surgery (SURG-A).

See Discussion on induction chemotherapy.

^oGood risk features for favorable T4a patients who could be observed after surgery include:

- Indolent histopathology: papillary variant of squamous cell carcinoma, verrucous carcinoma.
- Widely negative margins, pN0 neck, especially central compartment (Level VI) without perineural invasion, or lymphovascular invasion.
- Low-volume disease with microscopic extralaryngeal extension beyond the laryngeal skeleton and widely negative margins.
- pN0, Broders' grade I-II, subglottic extension <1 cm.

Note: All recommendations are category 2A unless otherwise indicated.

See Principles of Systemic Therapy (CHEM-A).

^mSee Post Chemoradiation or RT Neck Evaluation (SURG-A 8 of 9).

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY¹

PTV

CONCURRENT CHEMORADIATION 4,5

(1.6-1.8 Gy/fraction)³

➤ High risk: typically 70 Gy (2.0 Gy/fraction)

➤ Low to intermediate risk: 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy

DEFINITIVE:

RT Alone

- Tis, N0: 60.75 Gy (2.25 Gy/fraction) to 66 Gy (2.0 Gy/fraction)
- T1, N0: 63 Gy (2.25 Gy/fraction) to 66 Gy (2.0 Gy/fraction)
- T2, N0: 65.25 (2.25 Gy/fraction) to 70 Gy (2.0 Gy/fraction)
- ≥ T2, N1:
- ▶ PTV
 - High risk: Primary tumor and involved lymph nodes (this includes possible local subclinical infiltration at the primary site and at the high-risk level lymph node(s))
 - Fractionation:
 - -66 Gy (2.2 Gy/fraction) to 70 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-7 weeks²
 - -66-70 Gy (2.0 Gy/fraction; 6 fractions/week accelerated)
 - -Concomitant boost accelerated RT: 72 Gy/6 weeks
 - (1.8 Gy/fraction, large field; 1.5 Gy boost as second daily fraction during last 12 treatment days)
 - -Hyperfractionation: 79.2-81.6 Gy/7 weeks (1.2 Gy/fraction, twice daily)
 - Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³

Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended.

¹See Radiation Techniques (RAD-A) and Discussion.

- ²For doses >70 Gy, some clinicians feel that the fractionation should be slightly modified (eg, <2.0 Gy/fraction for at least some of the treatment) to minimize toxicity. An additional 2-3 doses can be added depending on clinical circumstances.
- ³Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).
- ⁴See Principles of Systemic Therapy (CHEM-A).
- ⁵Based on published data, concurrent chemoradiation most commonly uses conventional fractionation at 2.0 Gy per fraction to a typical dose of 70 Gy in 7 weeks with single-agent cisplatin given every 3 weeks at 100 mg/m²; 2-3 cycles of chemotherapy are used depending on the radiation fractionation scheme (RTOG 0129) (Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010;363:24-35). When carboplatin

and 5-FU are used, then the recommended regimen is standard fractionation plus 3 cycles of chemotherapy. (Bourhis J, Sire C, Graff P, et al. Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02): an open-label phase 3 randomised trial. Lancet Oncol 2012;13:145-153). Other fraction sizes (eg, 1.8 Gy, conventional), multiagent chemotherapy, other dosing schedules of cisplatin, or altered fractionation with chemotherapy are efficacious, and there is no consensus on the optimal approach. In general, the use of concurrent chemoradiation carries a high toxicity burden; altered fractionation or multiagent chemotherapy will likely further increase the toxicity burden. For any chemoradiation approach, close attention should be paid to published reports for the specific chemotherapy agent, dose, and schedule of administration. Chemoradiation should be performed by an experienced team and should include substantial supportive care.

Note: All recommendations are category 2A unless otherwise indicated.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY¹

POSTOPERATIVE:

RT

- Preferred interval between resection and postoperative RT is ≤6 weeks.
- PTV
- ▶ High risk: Adverse features such as positive margins (See footnote h on GLOT-3).
 - ♦ 60-66 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-6.5 weeks
- > Low to intermediate risk: sites of suspected subclinical spread
 - ♦ 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³

POSTOPERATIVE CHEMORADIATION

• Concurrent single-agent cisplatin at 100 mg/m² every 3 weeks is recommended. 6-9

Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended.

Note: All recommendations are category 2A unless otherwise indicated.

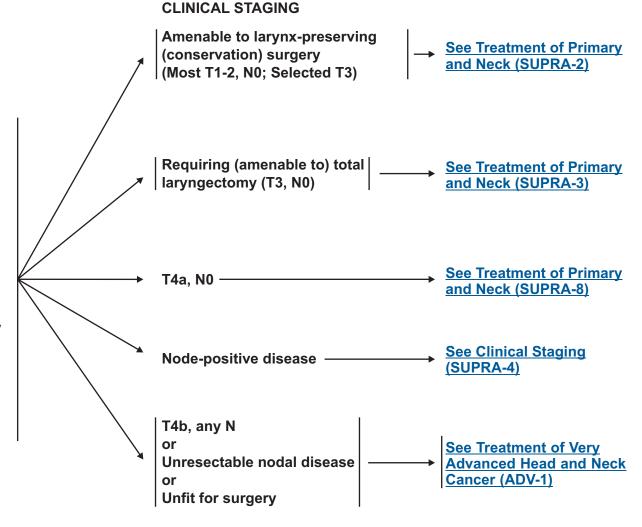
¹See Radiation Techniques (RAD-A) and Discussion.

³Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁶Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 2004;350:1945-1952.

⁷Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 2004:350:1937-1944.

⁸Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (#9501). Head Neck 2005;27:843-850.

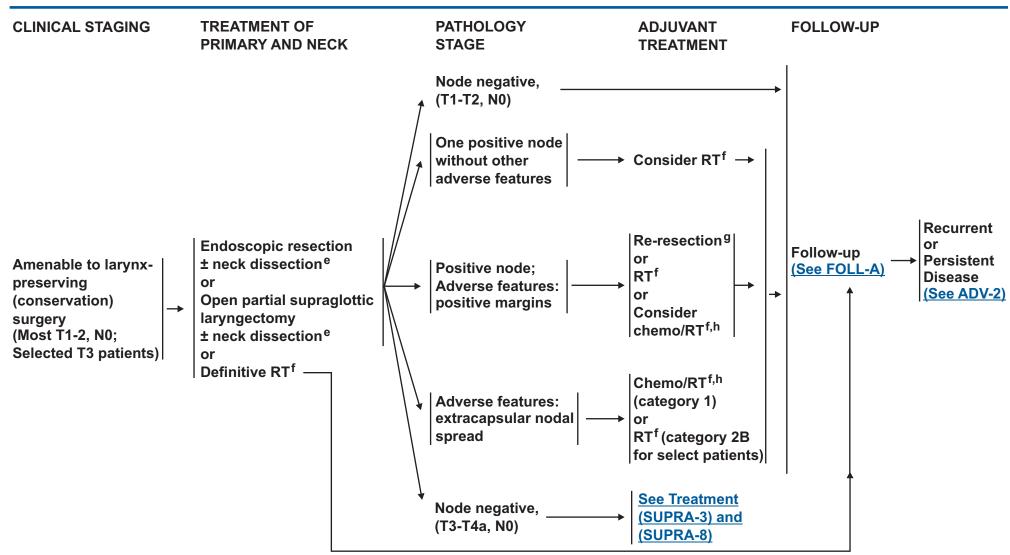

⁹Cooper JS, Zhang Q, Pajak TF et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2012;84:1198-1205.

- H&P^{a,b} including a complete head and neck exam; mirror and fiberoptic examination as clinically indicated
- Biopsy

WORKUP

- Chest imaging as clinically indicated
- CT with contrast and thin cuts through larynx and/or MRI of primary and neck
- Consider PET-CT for stage III-IV disease
- EUA with endoscopy
- Preanesthesia studies
- Dental evaluation cas clinically indicated
- Nutrition, speech and swallowing evaluation/therapy, and audiogram as clinically indicated ^d
- Consider videostrobe for select patients
- Consider pulmonary function tests for conservation surgery candidates

Multidisciplinary consultation as indicated

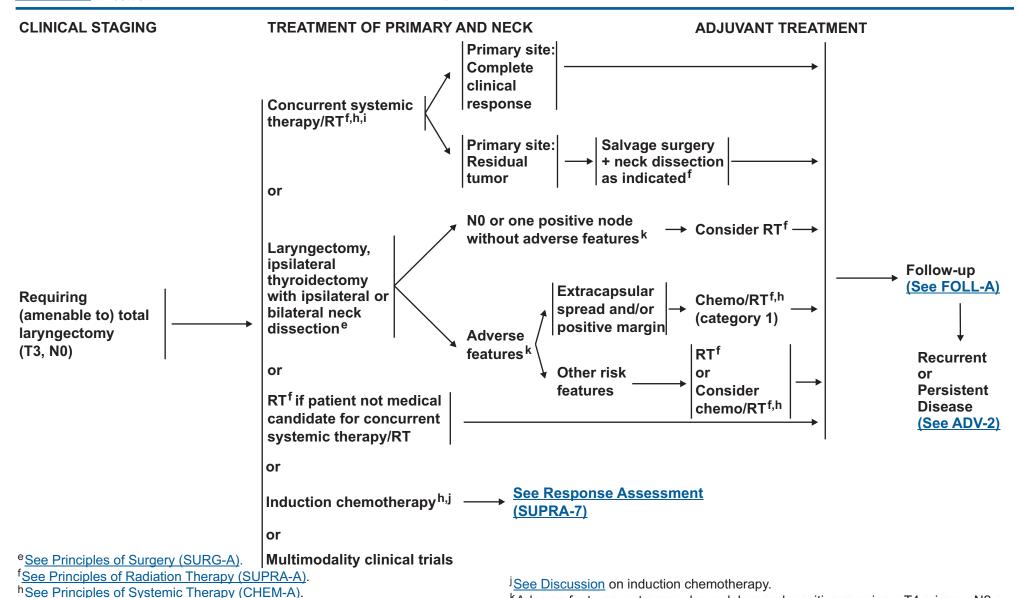

^aSmoking cessation counseling as clinically indicated. All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.

Note: All recommendations are category 2A unless otherwise indicated.

^bScreen for depression (See NCCN Guidelines for Distress Management).

^cSee Principles of Dental Evaluation and Management (DENT-A).

dSee Principles of Nutrition: Management and Supportive Care (NUTR-A).


^eSee Principles of Surgery (SURG-A).

Note: All recommendations are category 2A unless otherwise indicated.

fSee Principles of Radiation Therapy (SUPRA-A).

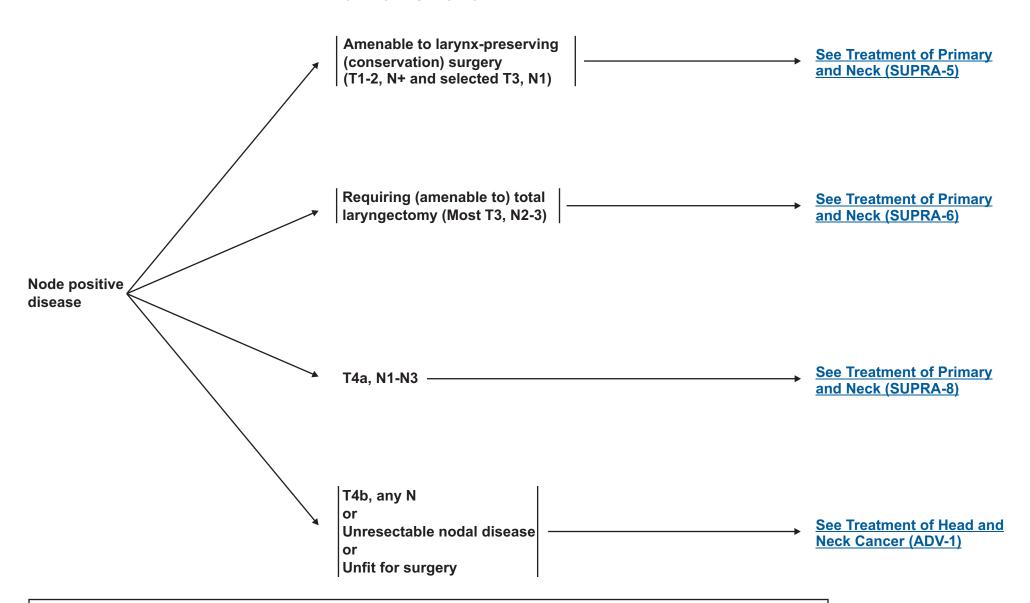
^gConsider re-resection to achieve negative margins, if feasible.

^hSee Principles of Systemic Therapy (CHEM-A).

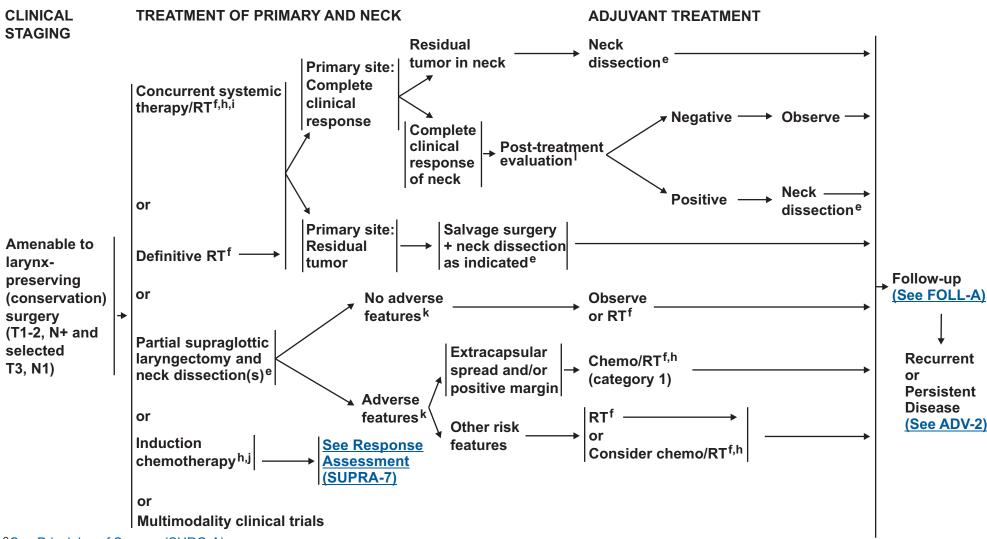
Note: All recommendations are category 2A unless otherwise indicated.

(category 1). See Principles of Systemic Therapy (CHEM-A).

When using concurrent chemotherapy/RT, the preferred agent is cisplatin


Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

^kAdverse features: extracapsular nodal spread, positive margins, pT4 primary, N2 or


N3 nodal disease, perineural invasion, vascular embolism (See Discussion).

Discussion

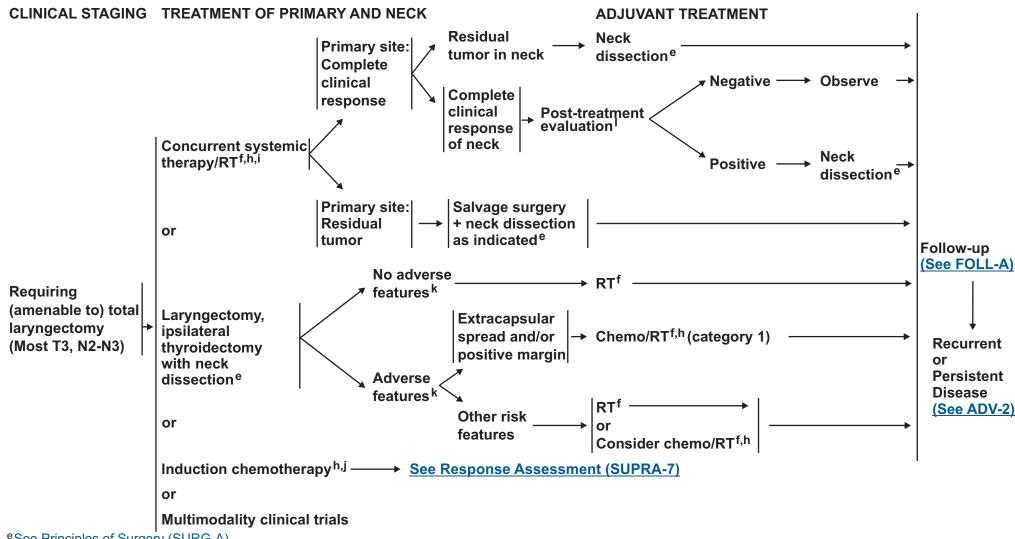
CLINICAL STAGING

Note: All recommendations are category 2A unless otherwise indicated.

^eSee Principles of Surgery (SURG-A).

Note: All recommendations are category 2A unless otherwise indicated.

fSee Principles of Radiation Therapy (SUPRA-A).


h See Principles of Systemic Therapy (CHEM-A).

ⁱWhen using concurrent chemotherapy/RT, the preferred agent is cisplatin (category 1). <u>See Principles of Systemic Therapy (CHEM-A)</u>.

^jSee Discussion on induction chemotherapy.

^kAdverse features: extracapsular nodal spread, positive margins, pT4 primary, N2 or N3 nodal disease, perineural invasion, vascular embolism (<u>See Discussion</u>).

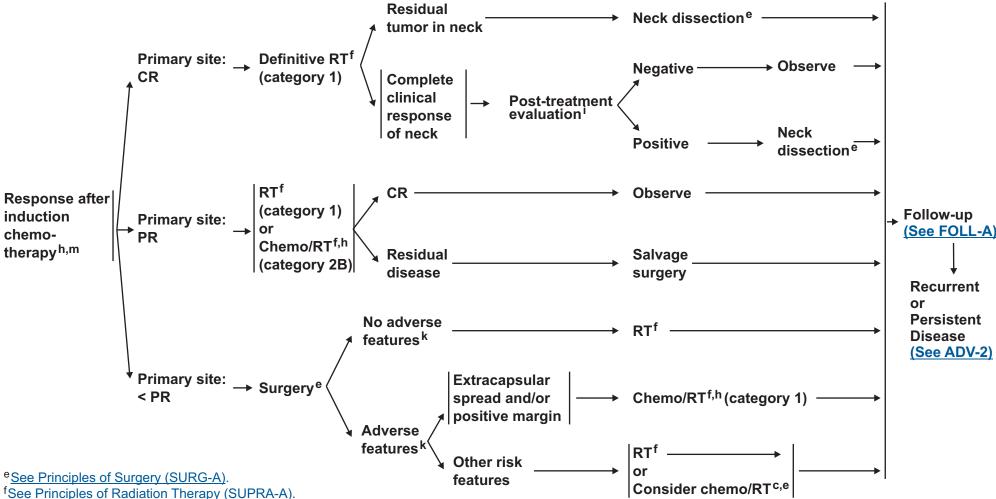
See Post Chemoradiation or RT Neck Evaluation (SURG-A 8 of 9).

eSee Principles of Surgery (SURG-A).

Note: All recommendations are category 2A unless otherwise indicated.

^fSee Principles of Radiation Therapy (SUPRA-A).

^hSee Principles of Systemic Therapy (CHEM-A).

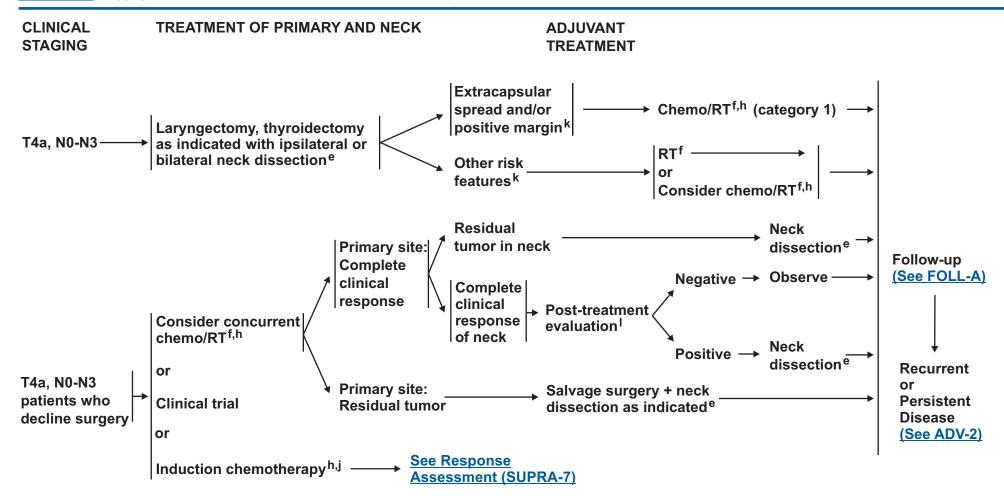

ⁱWhen using concurrent chemotherapy/RT, the preferred agent is cisplatin (category 1). See Principles of Systemic Therapy (CHEM-A).

See Discussion on induction chemotherapy.

kAdverse features: extracapsular nodal spread, positive margins, pT4 primary, N2 or N3 nodal disease, perineural invasion, vascular embolism (See Discussion).

See Post Chemoradiation or RT Neck Evaluation (SURG-A 8 of 9).

RESPONSE ASSESSMENT



Note: All recommendations are category 2A unless otherwise indicated.

hSee Principles of Systemic Therapy (CHEM-A).

^kAdverse features: extracapsular nodal spread, positive margins, pT4 primary, N2 or N3 nodal disease, perineural invasion, vascular embolism (See Discussion). See Post Chemoradiation or RT Neck Evaluation (SURG-A 8 of 9).

mIn randomized clinical trials, assessment of response has been done after 2 or 3 cycles.

^eSee Principles of Surgery (SURG-A).

Note: All recommendations are category 2A unless otherwise indicated.

fSee Principles of Radiation Therapy (SUPRA-A).

^hSee Principles of Systemic Therapy (CHEM-A).

JSee Discussion on induction chemotherapy.

^kAdverse features: extracapsular nodal spread, positive margins, pT4 primary, N2 or N3 nodal disease, perineural invasion, vascular embolism (<u>See Discussion</u>).

See Post Chemoradiation or RT Neck Evaluation (SURG-A 8 of 9).

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY¹

DEFINITIVE:

RT Alone

- T1-2, N0: 66-70 Gy conventional (2.0 Gy/fraction)²
- T2-3. N0-1:
- **▶ PTV**
 - High risk: Primary tumor and involved lymph nodes (this includes possible local subclinical infiltration at the primary site and at the high-risk level lymph node(s))
 - Fractionation
 - φ 66 Gy (2.2 Gy/fraction) to 70 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-7 weeks 3

 - (1.8 Gy/fraction, large field; 1.5 Gy boost as second daily fraction during last 12 treatment days)
 - **♦ Hyperfractionation: 79.2-81.6 Gy/7 weeks**
 - (1.2 Gy/fraction twice daily)
 - Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)⁴

Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

ON ^{5,6}

CONCURRENT CHEMORADIATION 5,6

- PTV
- ➤ High risk: typically 70 Gy (2.0 Gy/fraction)
- ➤ Low to intermediate and low risk: 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)⁴

¹See Radiation Techniques (RAD-A) and Discussion.

² For select T1-2, N0 tumors, accelerated fractionation may be used.

³For doses >70 Gy, some clinicians feel that the fractionation should be slightly modified (eg, <2.0 Gy/fraction for at least some of the treatment) to minimize toxicity. An additional 2-3 doses can be added depending on clinical circumstances.

⁴Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁵See Principles of Systemic Therapy (CHEM-A).

⁶Based on published data, concurrent chemoradiation most commonly uses conventional fractionation at 2.0 Gy per fraction to a typical dose of 70 Gy in 7 weeks with single-agent cisplatin given every 3 weeks at 100 mg/m²; 2-3 cycles of chemotherapy are used depending on the radiation fractionation scheme (RTOG) (Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010;363:24-35). When carboplatin and 5-FU are used, the recommended regimen is standard fractionation plus 3 cycles of chemotherapy. (Bourhis J, Sire C, Graff P, et al. Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02): an open-label phase 3 randomised trial. Lancet Oncol 2012;13:145-153). Other fraction sizes (eg, 1.8 Gy, conventional), multiagent chemotherapy, other dosing schedules of cisplatin, or altered fractionation with chemotherapy are efficacious, and there is no consensus on the optimal approach. In general, the use of concurrent chemoradiation carries a high toxicity burden; altered fractionation or multiagent chemotherapy will likely further increase the toxicity burden. For any chemoradiation approach, close attention should be paid to published reports for the specific chemotherapy agent, dose, and schedule of administration. Chemoradiation should be performed by an experienced team and should include substantial supportive care.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY¹

POSTOPERATIVE:

RT

- Preferred interval between resection and postoperative RT is ≤6 weeks.
- PTV
- ▶ High risk: Adverse features such as positive margins (See footnote k on <u>SUPRA-3</u>).
 - ♦ 60-66 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-6.5 weeks
- > Low to intermediate risk: sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)⁴

POSTOPERATIVE CHEMORADIATION

• Concurrent single-agent cisplatin at 100 mg/m² every 3 weeks is recommended. ⁷⁻¹⁰

Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended.

Note: All recommendations are category 2A unless otherwise indicated.

¹See Radiation Techniques (RAD-A) and Discussion.

⁴Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁷Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 2004:350:1945-1952.

⁸Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 2004;350:1937-1944.

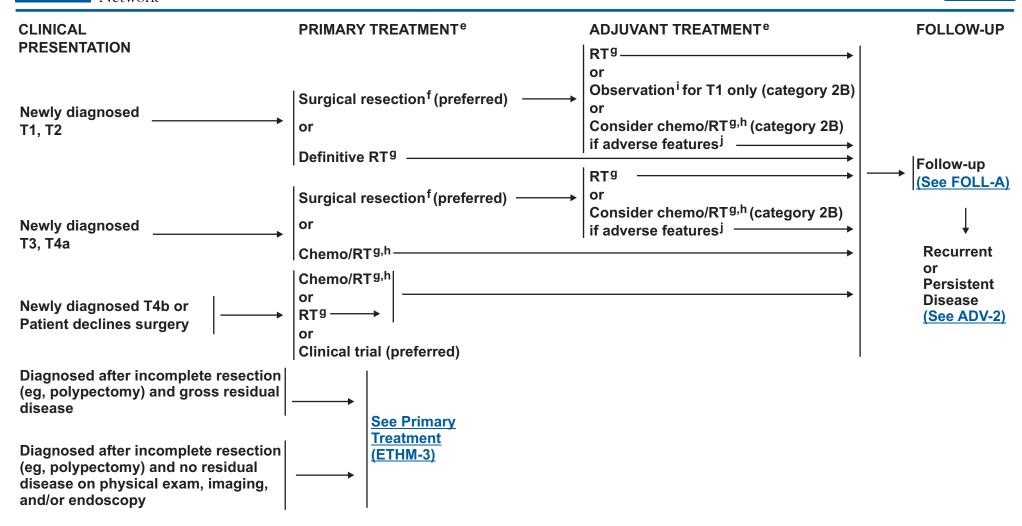
⁹Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (#9501). Head Neck 2005;27:843-850.

¹⁰Cooper JS, Zhang Q, Pajak TF et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2012;84:1198-1205.

WORKUP **PATHOLOGY** Squamous cell carcinoma Adenocarcinoma Minor salivary gland tumor^d See Primary • Esthesioneuroblastoma **Treatment** (ETHM-2) Undifferentiated carcinoma (sinonasal undifferentiated carcinoma [SNUC], small cell neuroendocrine)e • H&Pa,b including a complete head and neck exam; mirror and fiberoptic examination as clinically indicated • CT or MRI skull base through thoracic Mucosal melanoma **Biopsy** inlet (See NCCN Guidelines for Mucosal Melanoma MM-1) • Dental consultation c as clinically indicated Chest imaging as clinically indicated Consider PET/CT for Stage III or IV Sarcoma (See NCCN Guidelines for Soft Tissue Sarcoma) Lymphoma (See NCCN Guidelines for Non-Hodgkin's Lymphoma)

Note: All recommendations are category 2A unless otherwise indicated.

^aSmoking cessation counseling as clinically indicated. All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.


^bScreen for depression (See NCCN Guidelines for Distress Management).

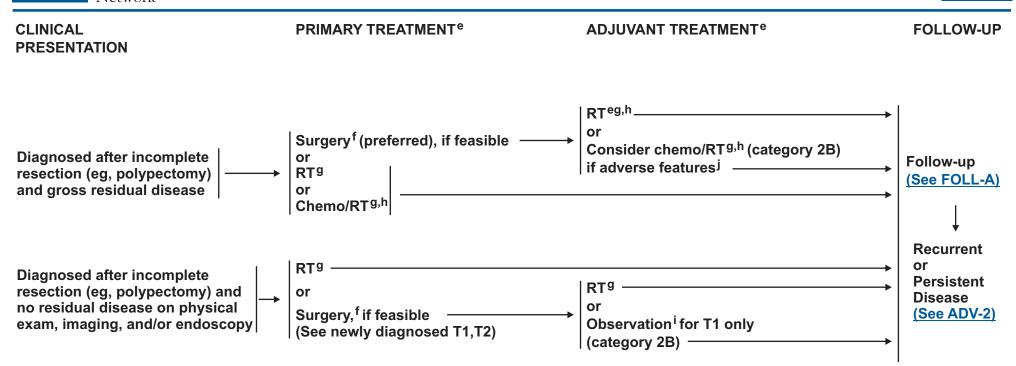
^cSee Principles of Dental Evaluation and Management (DENT-A).

dAlso see the NCCN Guidelines for Salivary Gland Tumors (SALI-1).

^eFor sinonasal undifferentiated carcinoma (SNUC) and small cell neuroendocrine histologies, systemic therapy should be a part of the overall treatment. Consider referral to a major medical center that specializes in these diseases.

^eFor sinonasal undifferentiated carcinoma (SNUC) and small cell neuroendocrine histologies, systemic therapy should be a part of the overall treatment. Consider referral to a major medical center that specializes in these diseases.

(See Discussion).


Note: All recommendations are category 2A unless otherwise indicated.

^fSee Principles of Surgery (SURG-A).

⁹See Principles of Radiation Therapy (ETHM-A). For minor salivary gland tumors, see SALI-A.

hSee Principles of Systemic Therapy (CHEM-A).

ⁱPathologic features: negative margins, central tumors, low-grade tumors. ^jAdverse features include positive margins and intracranial extension

^jAdverse features include positive margins and intracranial extension (<u>See Discussion</u>).

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Discussion

^eFor sinonasal undifferentiated carcinoma (SNUC) and small cell neuroendocrine histologies, systemic therapy should be a part of the overall treatment. Consider referral to a major medical center that specializes in these diseases.

fSee Principles of Surgery (SURG-A).

⁹See Principles of Radiation Therapy (ETHM-A). For minor salivary gland tumors, see <u>SALI-A</u>.

h See Principles of Systemic Therapy (CHEM-A).

ⁱPathologic features: negative margins, favorable histology, central tumors, low-grade tumors.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY¹

DEFINITIVE:

RT Alone

• PTV

- ➤ High risk: Primary tumor and involved lymph nodes (this includes possible local subclinical infiltration at the primary site and at the high-risk level lymph node(s))
 - Fractionation:
 - 66 Gy (2.2 Gy/fraction) to 70 Gy (1.8-2.0 Gy/fraction); daily Monday-Friday in 6-7 weeks⁵
 - 66-70 Gy (2.0 Gy/fraction; 6 fractions/week accelerated)
 - Concomitant boost accelerated RT: 72 Gy/6 weeks (2 Gy once daily and then 1.8 Gy/fraction, large field; 1.5 Gy boost as second daily fraction during last 12 treatment days)
 - Hyperfractionation: 81.6 Gy/7 weeks (1.2 Gy/fraction, twice daily)
- ➤ Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)^{2,3}

CONCURRENT CHEMORADIATION⁴

PTV

- ► High risk: typically 70 Gy (1.8-2.0 Gy/fraction); daily Monday-Friday in 7 weeks⁵
- ➤ Low to intermediate risk:
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)^{2,3}

POSTOPERATIVE:

RT

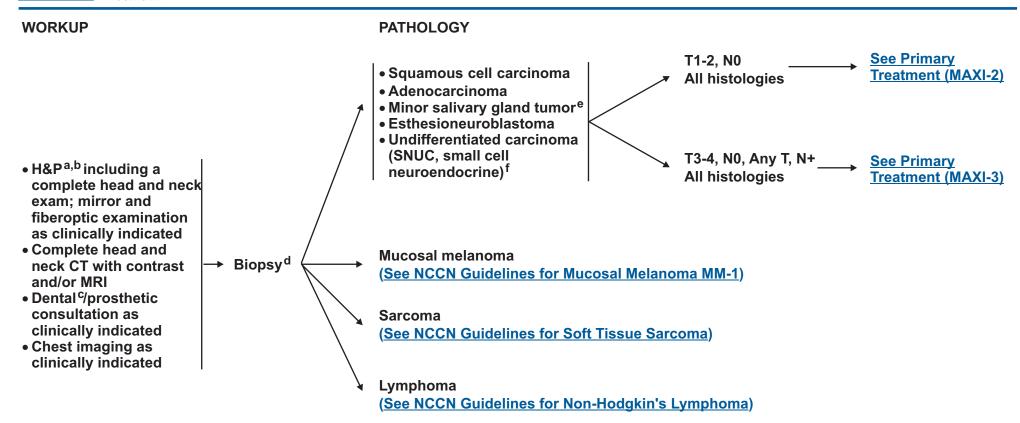
- Preferred interval between resection and postoperative RT is ≤6 weeks
- PTV
- ➤ High risk: Adverse features such as positive margins (See footnote j on ETHM-2)
 - ♦ 60-66 Gy (1.8-2.0 Gy/fraction); daily Monday-Friday in 6-6.5 weeks ⁵

POSTOPERATIVE CHEMORADIATION

• Concurrent single-agent cisplatin at 100 mg/m² every 3 weeks is recommended.

IMRT is preferred over 3-D conformal RT for maxillary sinus or paranasal/ethmoid sinus tumors to minimize dose to critical structures. The role of proton therapy is being investigated.

Note: All recommendations are category 2A unless otherwise indicated.


¹See Radiation Techniques (RAD-A) and Discussion.

²Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

³Treatment to sites of suspected subclinical spread is not consistently performed at all institutions. (Le QT, Fu KK, Kaplan MJ, et al. Lymph node metastasis in maxillary sinus carcinoma. Int J Radiat Oncol Biol Phys 2000;46:541-549.)

⁴See Principles of Systemic Therapy (CHEM-A).

⁵In the paranasal sinus area, care should be taken to avoid critical neural structures; therefore, 1.8 Gy/fraction can be considered.

^aSmoking cessation counseling as clinically indicated. All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.

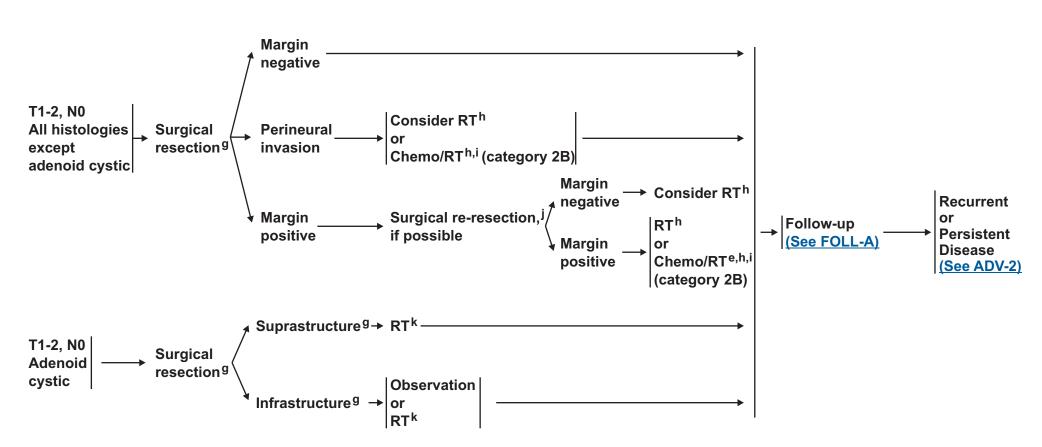
dBiopsy:

- Preferred route is transnasal.
- Needle biopsy may be acceptable.
- Avoid canine fossa puncture or Caldwell-Luc approach.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Discussion


^bScreen for depression (See NCCN Guidelines for Distress Management).

^cSee Principles of Dental Evaluation and Management (DENT-A).

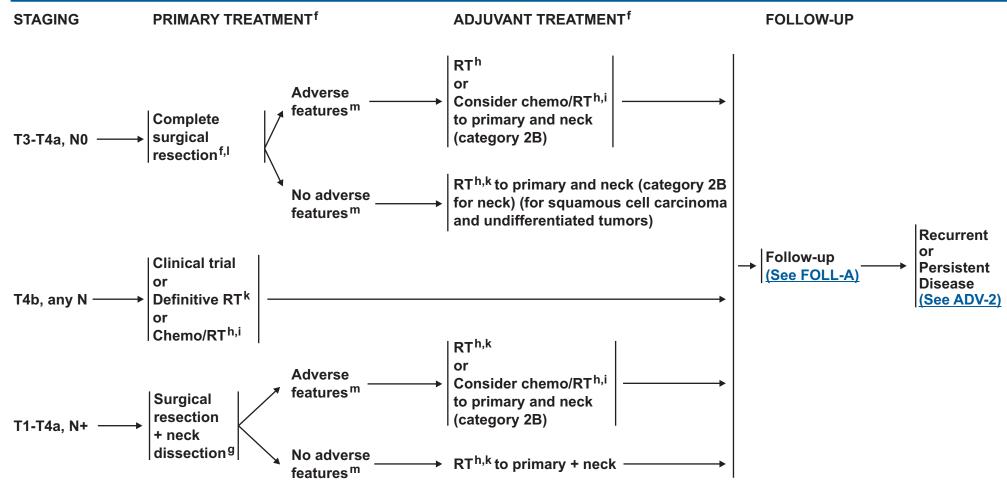
^eAlso see the NCCN Guidelines for Salivary Gland Tumors (SALI-1).

^fFor sinonasal undifferentiated carcinoma (SNUC) and small cell neuroendocrine histologies, systemic therapy should be a part of the overall treatment. Consider referral to a major medical center that specializes in these diseases.

STAGING PRIMARY TREATMENT^f ADJUVANT TREATMENT^f FOLLOW-UP

^fFor sinonasal undifferentiated carcinoma (SNUC) and small cell neuroendocrine histologies, systemic therapy should be a part of the overall treatment. Consider referral to a major medical center that specializes in these diseases.

Note: All recommendations are category 2A unless otherwise indicated.


^gSee Principles of Surgery (SURG-A).

h See Principles of Radiation Therapy (MAXI-A).

See Principles of Systemic Therapy (CHEM-A).

^jConsider re-resection to achieve negative margins, if feasible.

^kFor adenoid cystic tumors and minor salivary gland tumors, see <u>SALI-A</u>.

^fFor sinonasal undifferentiated carcinoma (SNUC) and small cell neuroendocrine histologies, systemic therapy should be a part of the overall treatment. Consider referral to a major medical center that specializes in these diseases.

Note: All recommendations are category 2A unless otherwise indicated.

⁹See Principles of Surgery (SURG-A).

hSee Principles of Radiation Therapy (MAXI-A).

See Principles of Systemic Therapy (CHEM-A).

^kFor adenoid cystic tumors and minor salivary gland tumors, see <u>SALI-A</u>.

^IFor surgical resection, consider preoperative RT or preoperative chemo/RT in select patients (category 2B).

^mAdverse features include positive margins or extracapsular nodal spread (<u>See Discussion</u>).

Comprehensive NCCN Guidelines Version 2.2014 **Maxillary Sinus Tumors**

NCCN Guidelines Index Head and Neck Table of Contents Discussion

PRINCIPLES OF RADIATION THERAPY¹

DEFINITIVE:

RT Alone

• PTV

- ➤ High risk: Primary tumor and involved lymph nodes (this includes PTV possible local subclinical infiltration at the primary site and at the high-risk level lymph node(s))
 - Fractionation:
 - 66 Gy (2.2 Gy/fraction) to 70 Gy (1.8-2.0 Gy/fraction) daily Monday-Friday in 6-7 weeks⁵
 - 66-70 Gy (2.0 Gy/fraction; 6 fractions/week accelerated)
 - Concomitant boost accelerated RT: 72 Gy/6 weeks (2 Gy once daily and then 1.8 Gy/fraction, large field; 1.5 Gy boost as second daily fraction during last 12 treatment days)
 - Hyperfractionation: 81.6 Gy/7 weeks (1.2 Gy/fraction, twice daily)
- ▶ Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)^{2,3}

CONCURRENT CHEMORADIATION⁴

PTV

- ➤ High-risk: typically 70 Gy (1.8-2.0 Gy/fraction); daily Monday-Friday in 7 weeks⁵
- ➤ Low to intermediate risk:
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)^{2,3}

IMRT is preferred over 3D conformal RT for maxillary sinus or paranasal/ethmoid sinus tumors to minimize dose to critical structures. The role of proton therapy is being investigated.

¹See Radiation Techniques (RAD-A) and Discussion.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

POSTOPERATIVE:

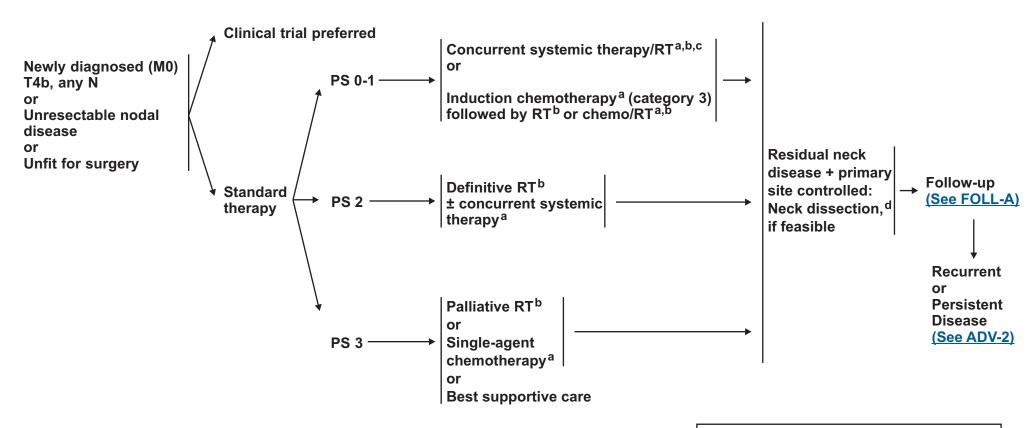
- Preferred interval between resection and postoperative RT is ≤6 weeks
- ▶ High risk: Adverse features such as positive margins (See footnote m on MAXI-3)
 - ♦ 60-66 Gv (1.8-2.0 Gv/fraction); daily Monday-Friday in 6-6.5 weeks⁵
- > Low to intermediate risk: sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)^{2,3}

POSTOPERATIVE CHEMORADIATION

 Concurrent single-agent cisplatin at 100 mg/m² every 3 weeks is recommended.

²Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

³Treatment to sites of suspected subclinical spread is not consistently performed at all institutions. (Le QT, Fu KK, Kaplan MJ, et al. Lymph node metastasis in maxillary sinus carcinoma. Int J Radiat Oncol Biol Phys 2000;46:541-549) and (Jeremic B, Nguyen-Tan PF, Bamberg M. Elective neck irradiation in locally advanced squamous cell carcinoma of the maxillary sinus: a review. J Cancer Res Clin Oncol 2002;128:235-238.)


⁴See Principles of Systemic Therapy (CHEM-A).

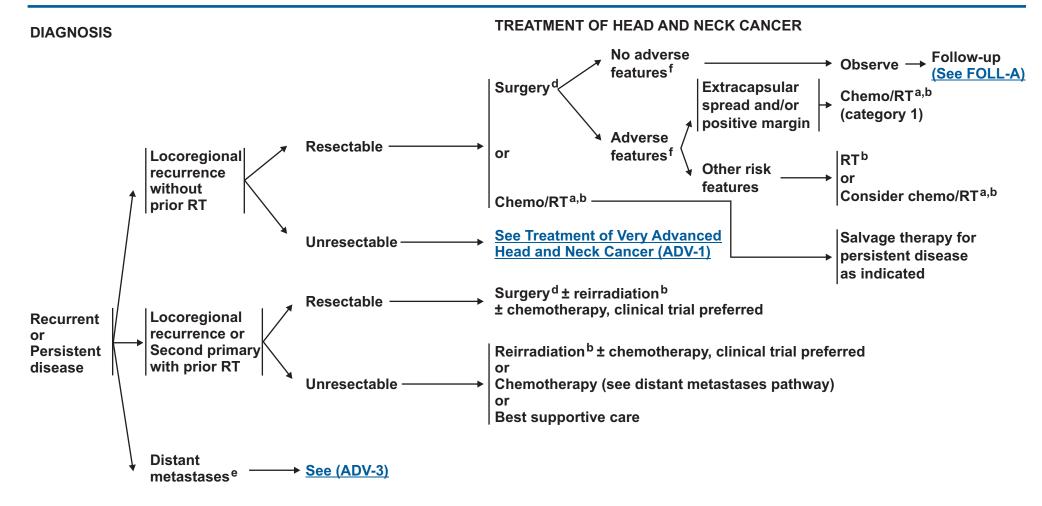
⁵In the paranasal sinus area, care should be taken to avoid critical neural structures; therefore, 1.8 Gy/fraction can be considered.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Very Advanced Head and Neck Cancer

DIAGNOSIS

TREATMENT OF HEAD AND NECK CANCER

PS = Performance Status (Eastern Cooperative Oncology Group [ECOG])


Note: All recommendations are category 2A unless otherwise indicated.

^aSee Principles of Systemic Therapy (CHEM-A).

^bSee Principles of Radiation Therapy (ADV-A).

^cWhen using concurrent chemotherapy/RT, the preferred agent is cisplatin (category 1). <u>See Principles of Systemic Therapy (CHEM-A)</u>.

d See Principles of Surgery (SURG-A).

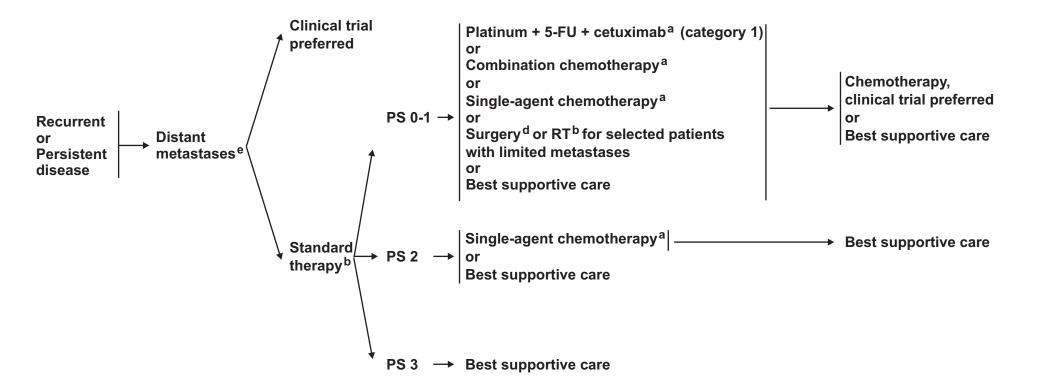
^aSee Principles of Systemic Therapy (CHEM-A).

Note: All recommendations are category 2A unless otherwise indicated.

^bSee Principles of Radiation Therapy (ADV-A).

dSee Principles of Surgery (SURG-A).

^eConsider palliative RT as clinically indicated (eg, bone metastases). (See RAD-A).


fAdverse features: extracapsular nodal spread, positive margins, pT3 or pT4 primary, N2 or N3 nodal disease, perineural invasion, vascular embolism (See Discussion).

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Very Advanced Head and Neck Cancer

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

DIAGNOSIS

TREATMENT OF HEAD AND NECK CANCER

PS = Performance Status (ECOG)

Note: All recommendations are category 2A unless otherwise indicated.

^aSee Principles of Systemic Therapy (CHEM-A).

^bSee Principles of Radiation Therapy (ADV-A).

^dSee Principles of Surgery (SURG-A).

^eConsider palliative RT as clinically indicated (eg, bone metastases). (See RAD-A).

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Very Advanced Head and Neck Cancer

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY 1,2

CONCURRENT CHEMORADIATION³ (preferred for patients eligible for chemotherapy):

- PTV
- ➤ High risk: typically 70 Gy (2.0 Gy/fraction)
- ▶ Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)⁴

CHEMORADIATION

Based on published data, concurrent chemoradiation most commonly uses conventional fractionation at 2.0 Gy per fraction to a typical dose of 70 Gy in 7 weeks with single-agent cisplatin given every 3 weeks at 100 mg/m²; 2-3 cycles of chemotherapy are used depending on the radiation fractionation scheme (RTOG 0129) (Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010;363:24-35). When carboplatin and 5-FU are used, then the recommended regimen is standard fractionation plus 3 cycles of chemotherapy (Bourhis J, Sire C, Graff P, et al. Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02): an open-label phase 3 randomised trial. Lancet Oncol 2012;13:145-53). Other fraction sizes (eg, 1.8 Gy, conventional), multiagent chemotherapy, other dosing schedules of cisplatin, or altered fractionation with chemotherapy are efficacious, and there is no consensus on the optimal approach. In general, the use of concurrent chemoradiation carries a high toxicity burden; altered fractionation or multiagent chemotherapy will likely further increase the toxicity burden. For any chemoradiation approach, close attention should be paid to published reports for the specific chemotherapy agent, dose, and schedule of administration. Chemoradiation should be performed by an experienced team and should include substantial supportive care.

¹See Radiation Techniques (RAD-A) and Discussion.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Continue

ADV-A 1 of 2

²In general, the reirradiated population of head and neck cancer patients as described in the current literature represents a diverse but highly selected group of patients treated in centers where there is high level of expertise and systems in place for managing acute and long-term toxicities. When the goal of treatment is salvage and surgery is not an option, reirradiation strategies can be considered for patients who: develop locoregional failures or second primaries at ≥6 months after the initial radiotherapy; can receive additional doses of radiotherapy of at least 60 Gy; and can tolerate concurrent chemotherapy. Organs at risk for toxicity should be carefully analyzed through review of dose volume histograms, and consideration for acceptable doses should be made on the basis of time interval since original radiotherapy, anticipated volumes to be included, and patient's life expectancy. (McDonald M, Lawson J, Garg M, et al. ACR appropriateness criteria retreatment of recurrent head and neck cancer after prior definitive radiation. Expert panel on radiation oncology-head and neck cancer. Int J Radiat Oncol Biol Phys 2011;80:1292-1298.)

³See Principles of Systemic Therapy (CHEM-A).

⁴Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁵RTOG 0522: a randomized phase III trial of concurrent accelerated radiation and cisplatin versus concurrent accelerated radiation, cisplatin, and cetuximab [followed by surgery for selected patients] for stage III and IV head and neck carcinomas. Clin Adv Hematol Oncol 2007;5:79-81.

Comprehensive NCCN Guidelines Version 2.2014 **Very Advanced Head and Neck Cancer**

NCCN Guidelines Index Head and Neck Table of Contents Discussion

PRINCIPLES OF RADIATION THERAPY^{1,2}

DEFINITIVE:

RT Alone

• PTV

- > High risk: Primary tumor and involved lymph nodes (this includes possible local subclinical infiltration at the primary site and at the . PTV high-risk level lymph node(s))
 - Fractionation:
 - ▼ 70-72 Gv (2.0 Gv/fraction) daily Monday-Friday in 7-7.5 weeks⁶
 - **8 66-70 Gy (2.0 Gy/fraction; 6 fractions/week accelerated)** ■
 - Concomitant boost accelerated RT: 72 Gy/6 weeks (1.8 Gy/fraction, large field; 1.5 Gy boost as second daily fraction during last 12 treatment days)
 - Hyperfractionation: 81.6 Gy/7 weeks (1.2 Gy/fraction, twice daily)
 - **Modified fractionation: total dose >70 Gy and treatment** course <7 weeks
- ► Low to intermediate risk: sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction⁴

POSTOPERATIVE:

- Preferred interval between resection and postoperative RT is ≤6 weeks.
- ► High risk: Adverse features such as positive margins (See footnote f on ADV-2)
 - 60-66 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-6.5 weeks
- ► Low to intermediate risk: sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)⁴

POSTOPERATIVE CHEMORADIATION

• Concurrent single-agent cisplatin at 100 mg/m² every 3 weeks is recommended. 7-9

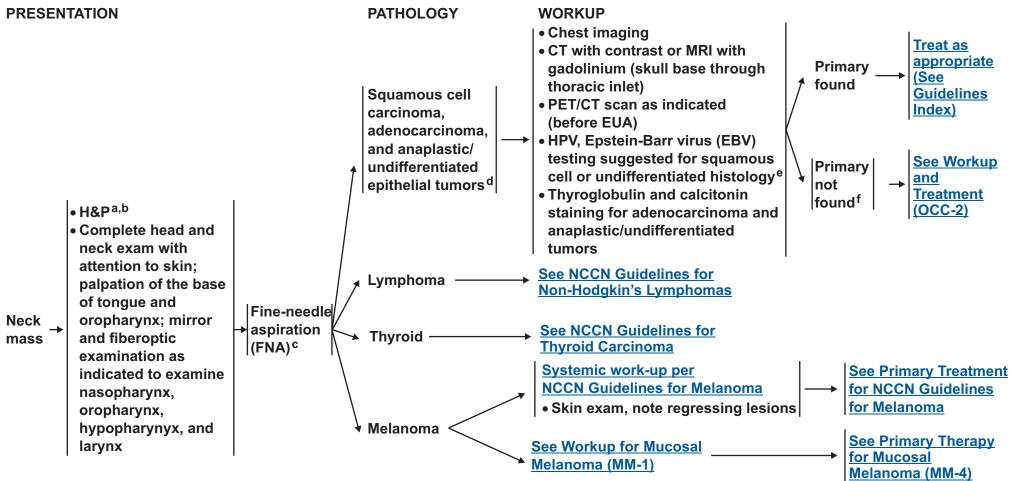
Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended.

⁴Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

Note: All recommendations are category 2A unless otherwise indicated.

See Radiation Techniques (RAD-A) and Discussion.

²In general, the reirradiated population of head and neck cancer patients as described in the current literature represents a diverse but highly selected group of patients treated in centers where there is high level of expertise and systems in place for managing acute and long-term toxicities. When the goal of treatment is salvage and surgery is not an option, reirradiation strategies can be considered for patients who: develop locoregional failures or second primaries at ≥6 months after the initial radiotherapy; can receive additional doses of radiotherapy of at least 60 Gy; and can tolerate concurrent chemotherapy. Organs at risk for toxicity should be carefully analyzed through review of dose volume histograms, and consideration for acceptable doses should be made on the basis of time interval since original radiotherapy, anticipated volumes to be included, and patient's life expectancy. (McDonald M, Lawson J, Garg M, et al. ACR appropriateness criteria retreatment of recurrent head and neck cancer after prior definitive radiation. Expert panel on radiation oncology-head and neck cancer. Int J Radiat Oncol Biol Phys 2011;80:1292-1298.)


⁶ For doses >70 Gy, some clinicians feel that the fractionation should be slightly modified (eg, <2.0 Gy/fraction for at least some of the treatment) to minimize toxicity. An additional 2-3 doses can be added depending on clinical circumstances.

⁷Bernier J. Domenge C. Ozsahin M. et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 2004;350:1945-1952.

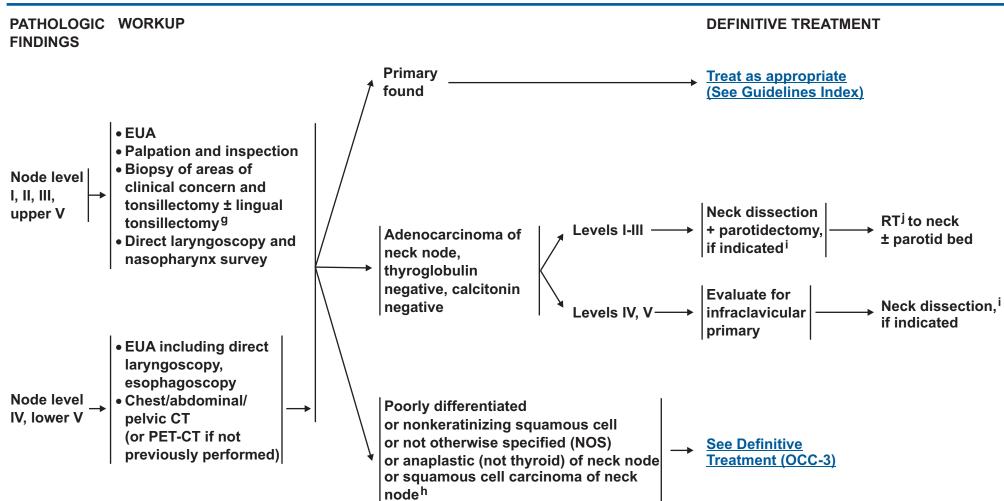
⁸Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 2004;350:1937-1944.

⁹Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (#9501). Head Neck 2005;27:843-850.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Occult Primary

^aSmoking cessation counseling as clinically indicated. All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.

Note: All recommendations are category 2A unless otherwise indicated.


^bScreen for depression (<u>See NCCN Guidelines for Distress Management</u>).

^cRepeat FNA, core, or open biopsy may be necessary for uncertain or non-diagnostic histologies. Patient should be prepared for neck dissection at time of open biopsy, if indicated.

^dDetermined with appropriate immunohistochemical stains.

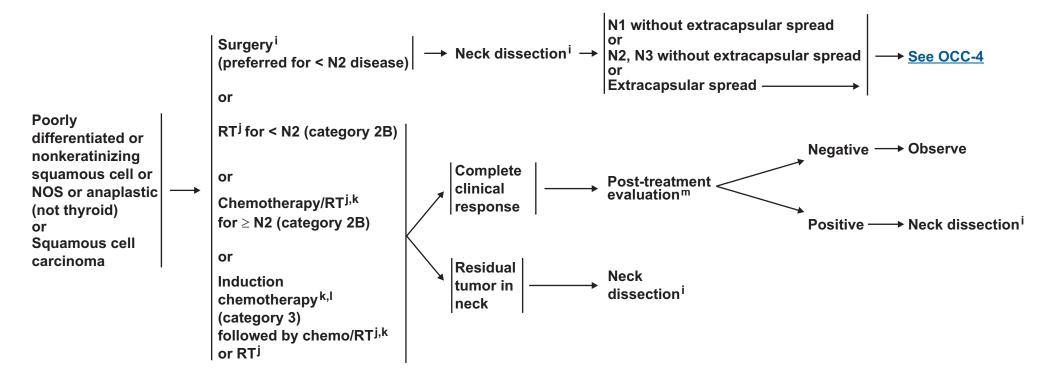
^eWhether HPV or EBV positive status may help to define the radiation fields is being investigated (<u>See Principles of Surgery [SURG-A 2 of 9] and Discussion</u>).

^fStrongly consider referral to a high-volume, multidisciplinary cancer center.

⁹Enrollment in a clinical trial to determine the efficacy of lingual tonsillectomy is strongly encouraged to assess patient outcomes.

^hHPV and EBV testing are suggested if not yet done.

See Principles of Surgery (SURG-A).


See Principles of Radiation Therapy (OCC-A).

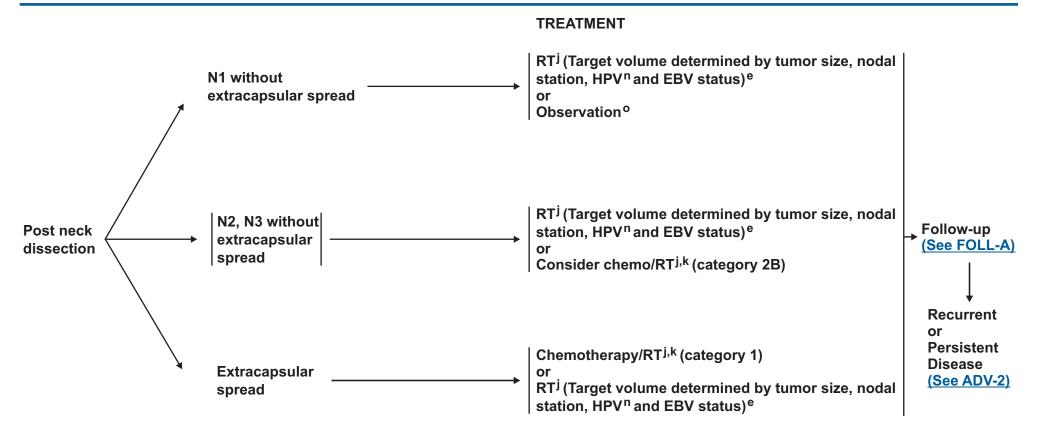
Note: All recommendations are category 2A unless otherwise indicated.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Occult Primary

HISTOLOGY

DEFINITIVE TREATMENT

Note: All recommendations are category 2A unless otherwise indicated.


See Principles of Surgery (SURG-A).

See Principles of Radiation Therapy (OCC-A).

kSee Principles of Systemic Therapy (CHEM-A).

See Discussion on induction chemotherapy.

^mSee Post Chemoradiation or RT Neck Evaluation (SURG-A 8 of 9).

Note: All recommendations are category 2A unless otherwise indicated.

^eWhether HPV or EBV positive status may help to define the radiation fields is being investigated (See Discussion).

See Principles of Radiation Therapy (OCC-A).

kSee Principles of Systemic Therapy (CHEM-A).

ⁿEither immunohistochemistry for analysis of p16 expression or HPV in situ hybridization for detection of HPV DNA in tumor cell nuclei is recommended. Although not used to guide treatment, HPV testing is valuable prognostically. The results of HPV testing should not change management decisions except in the context of a clinical trial.

Observation: Regular comprehensive exam performed by a head and neck oncologist 1 month after surgery followed by regular exams every 3 months through year 2, every 6 months for 3 years, then annually thereafter. Imaging consisting of CT/MRI or PET should be performed as clinically indicated.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Occult Primary

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY 1,2

DEFINITIVE

RT Alone

• PTV

- ➤ High risk: Involved lymph nodes (this includes possible local subclinical infiltration at the high-risk level lymph node(s)
 - Fractionation:
 - 66 Gy (2.2 Gy/fraction) to 70 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-7 weeks³
 - Mucosal dosing: 50-66 Gy (2.0 Gy/fraction) to putative mucosal sites, depending on field size. Consider higher dose to 60-66 Gy to particularly suspicious areas
- ➤ Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)⁴

CONCURRENT CHEMORADIATION: 5,6

• PTV

- ➤ High risk: typically 70 Gy (2.0 Gy/fraction)
- ➤ Mucosal dosing: 50-60 Gy (2.0 Gy/fraction) to putative mucosal primary sites, depending on field size and use of chemotherapy. Consider higher dose to 60-66 Gy to particularly suspicious areas
- ► Low to intermediate risk: 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)⁴

Either IMRT or 3-D conformal RT is recommended when targeting the oropharynx to minimize the dose to critical structures, especially the parotid glands.

⁶Based on published data, concurrent chemoradiation most commonly uses conventional fractionation at 2.0 Gy per fraction to a typical dose of 70 Gy in 7 weeks with single-agent cisplatin given every 3 weeks at 100 mg/m²; 2-3 cycles of chemotherapy are used depending on the radiation fractionation scheme (RTOG 0129) (Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010;363:24-35). When carboplatin and 5-FU are used, the recommended regimen is standard fractionation plus 3 cycles of chemotherapy. (Bourhis J, Sire C, Graff P, et al. Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02): an open-label phase 3 randomised trial. Lancet Oncol 2012;13:145-153). Other fraction sizes (eg, 1.8 Gy, conventional), multiagent chemotherapy, other dosing schedules of cisplatin, or altered fractionation with chemotherapy are efficacious, and there is no consensus on the optimal approach. In general, the use of concurrent chemoradiation carries a high toxicity burden; altered fractionation or multiagent chemotherapy will likely further increase the toxicity burden. For any chemoradiation approach, close attention should be paid to published reports for the specific chemotherapy agent, dose, and schedule of administration. Chemoradiation should be performed by an experienced team and should include substantial supportive care.

Note: All recommendations are category 2A unless otherwise indicated.

¹For squamous cell carcinoma, adenocarcinoma, and poorly differentiated carcinoma.

²See Radiation Techniques (RAD-A) and Discussion.

³For doses >70 Gy, some clinicians feel that the fractionation should be slightly modified (eg, <2.0 Gy/fraction for at least some of the treatment) to minimize toxicity. An additional 2-3 doses can be added depending on clinical circumstances.

⁴Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁵See Principles of Systemic Therapy (CHEM-A).

PRINCIPLES OF RADIATION THERAPY 1,2

POSTOPERATIVE:

RT

- Preferred interval between resection and postoperative RT is ≤6 weeks
- PTV
- ➤ High risk: Adverse features such as extracapsular spread (See OCC-4)
 - Mucosal dose: 50-66 Gy (2.0 Gy/fraction) to putative mucosal sites, depending on field size. Consider higher dose to 60-66 Gy to particularly suspicious areas
- ▶ Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)⁴

POSTOPERATIVE CHEMORADIATION

• Concurrent single-agent cisplatin at 100 mg/m² every 3 weeks is recommended. 7-10

Either IMRT or 3-D conformal RT is recommended when targeting the oropharynx to minimize the dose to critical structures, especially the parotid glands.

Note: All recommendations are category 2A unless otherwise indicated.

¹ For squamous cell carcinoma, adenocarcinoma, and poorly differentiated carcinoma.

²See Radiation Techniques (RAD-A) and Discussion.

⁴Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

⁷Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 2004;350:1945-1952.

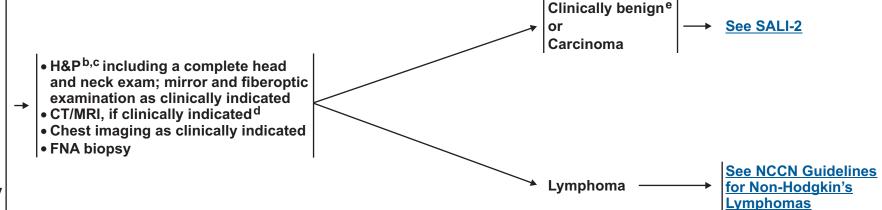
⁸Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 2004;350:1937-1944.

⁹Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (#9501). Head Neck 2005;27:843-850.

¹⁰Cooper JS, Zhang Q, Pajak TF et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2012;84:1198-1205.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Salivary Gland Tumors

CLINICAL PRESENTATION


WORKUP

Unresected salivary gland mass

- Parotid
- Submandibular
- Minor salivary gland^a

or

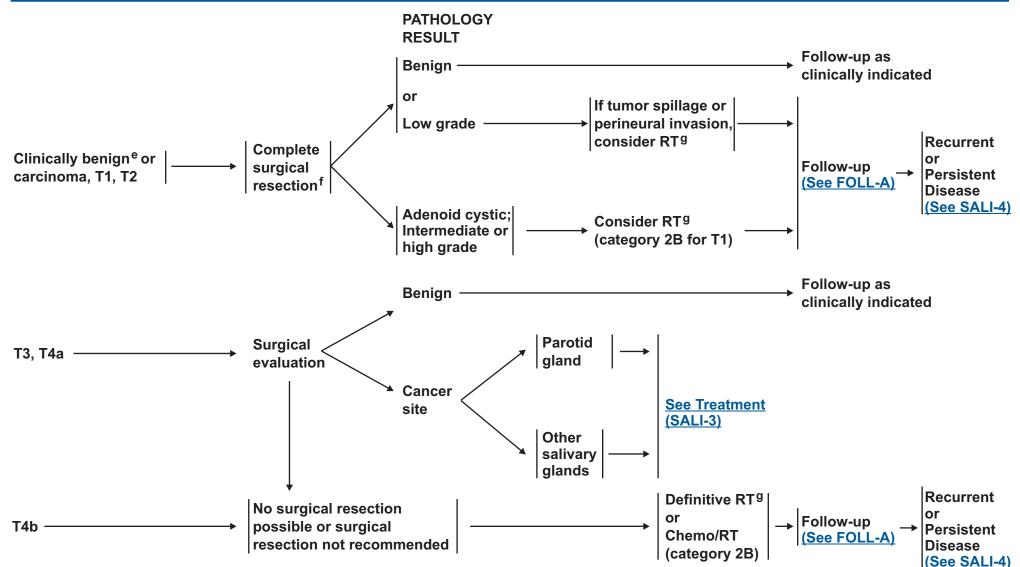
Incompletely resected salivary gland mass

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Discussion

^aSite and stage determine therapeutic approaches.

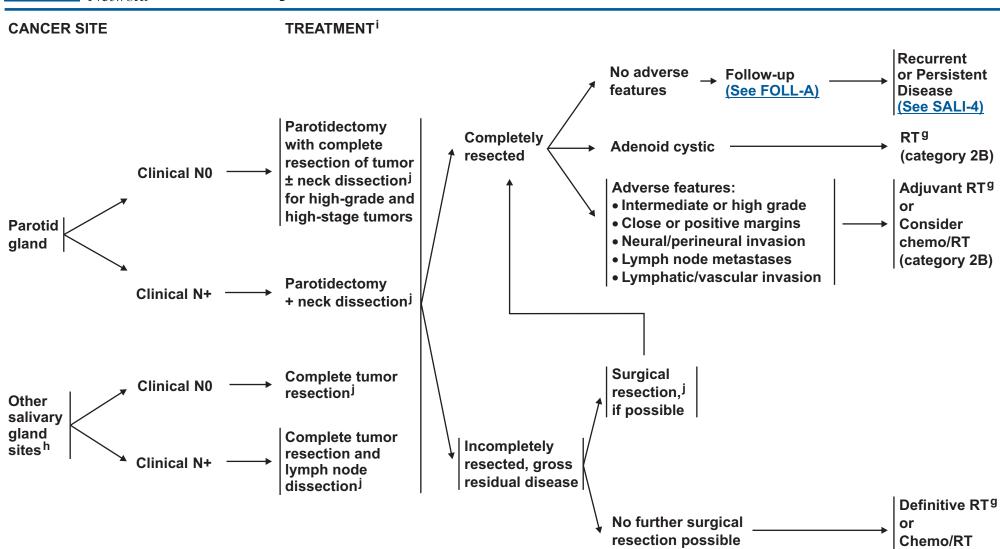

^bSmoking cessation counseling as clinically indicated. All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.

^cScreen for depression (See NCCN Guidelines for Distress Management).

^dFor advanced cancer, this includes CT/MRI: base of skull to clavicles.

^eCharacteristics of a benign tumor include mobile superficial lobe, slow growth, painless, VII intact, and no neck nodes

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Salivary Gland Tumors


^eCharacteristics of a benign tumor include mobile superficial lobe, slow growth, no pain, VII intact, and no neck nodes.

Note: All recommendations are category 2A unless otherwise indicated.

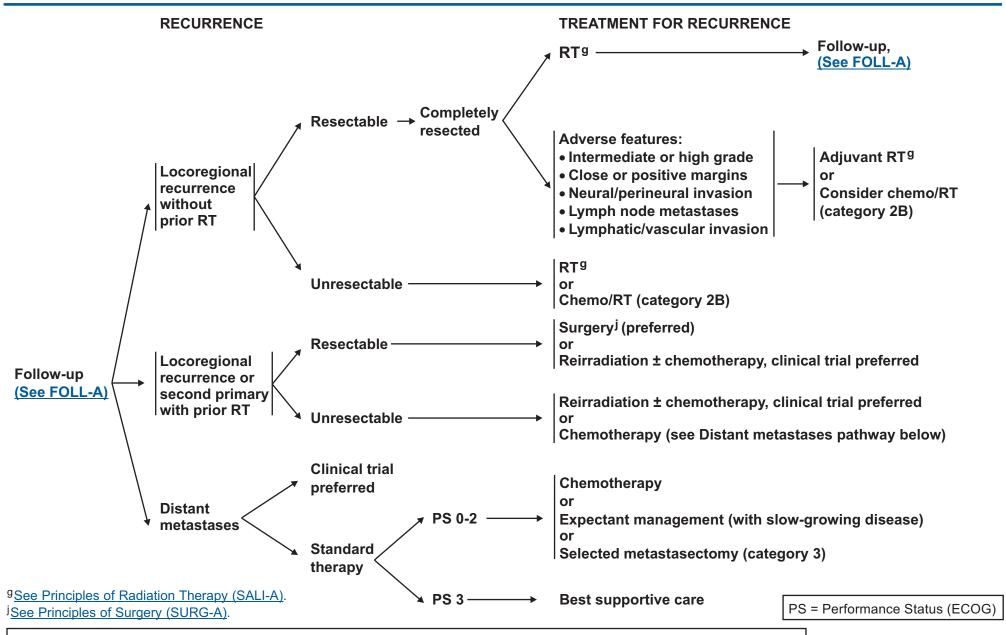
^fSurgical resection of a clinically benign tumor includes: no enucleation of lateral lobe and intraoperative communication with pathologist if indicated.

^gSee Principles of Radiation Therapy (SALI-A).

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Salivary Gland Tumors

⁹See Principles of Radiation Therapy (SALI-A).

See Principles of Surgery (SURG-A).


Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

(category 2B)

^hFor submandibular and sublingual gland tumors, complete gland and tumor resection recommended.

ⁱThe facial nerve should be preserved if possible.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

PRINCIPLES OF RADIATION THERAPY¹

DEFINITIVE

RT Alone

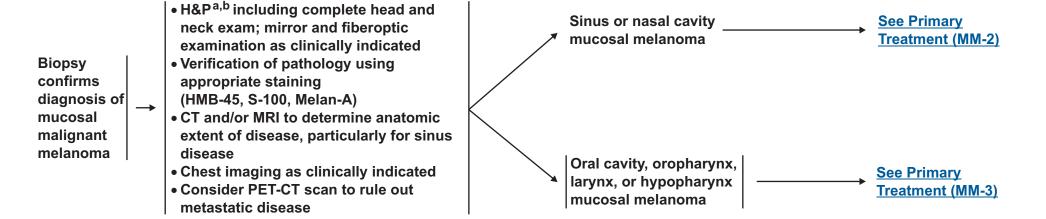
- Photon or photon/electron therapy or neutron therapy
- PTV:
- ➤ High risk: Primary tumor and involved lymph nodes (this includes possible local subclinical infiltration at the primary and at the high-risk level lymph node(s))
 - Fractionation:
 - 66 Gy (2.0 Gy/fraction) to 70 Gy (1.8-2.0 Gy/fraction); daily Monday-Friday in 6-7 weeks² or 19.2 nGy (1.2 nGy/fraction)
- ▶ Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³ or 13.2 nGy (1.2 nGy/fraction)

POSTOPERATIVE

RT

- Preferred interval between resection and postoperative RT is ≤6 weeks
- Photon or photon/electron therapy or neutron therapy
- PTV
- ▶ High risk: Adverse features such as positive margins (see SALI-3)
 - 60-66 Gy (2.0 Gy/fraction); daily Monday-Friday in 6-7 weeks or 18 nGy (1.2 nGy/fraction)
- ➤ Low to intermediate risk: Sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63 Gy (1.6-1.8 Gy/fraction)³ or 13.2 nGy (1.2 nGy/fraction)

Either intensity-modulated RT (IMRT) or 3-D conformal RT is recommended.

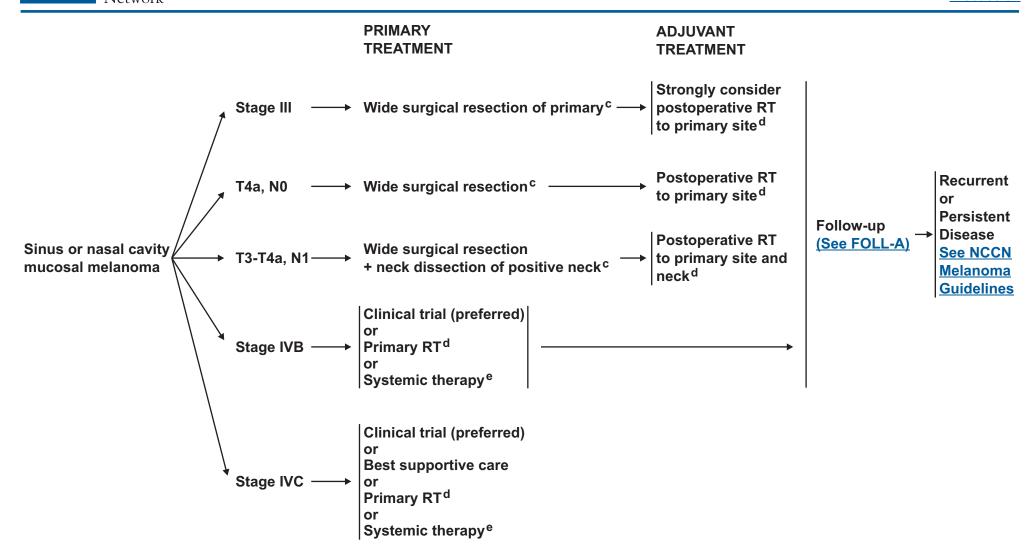

Note: All recommendations are category 2A unless otherwise indicated.

¹See Radiation Techniques (RAD-A) and (Discussion).

²For doses >70 Gy, some clinicians feel that the fractionation should be slightly modified (eg, <2.0 Gy/fraction for at least some of the treatment) to minimize toxicity. An additional 2-3 doses can be added depending on clinical circumstances.

³Suggest 44-50 Gy in 3D conformal RT and sequentially planned IMRT or 54-63 Gy with IMRT dose painting technique (dependent upon dose per fraction).

PRESENTATION WORKUP TREATMENT

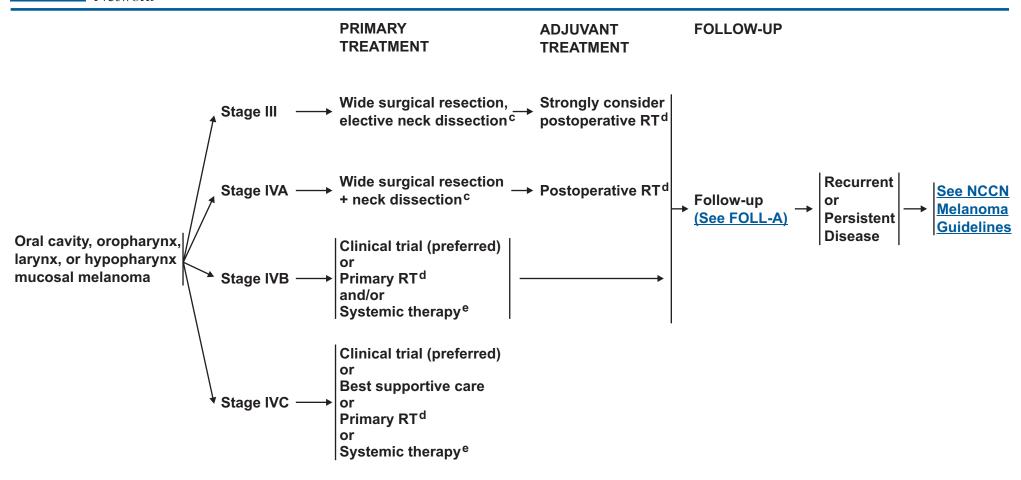

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

^aSmoking cessation counseling as clinically indicated. All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.

^bScreen for depression (See NCCN Guidelines for Distress Management).

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Mucosal Melanoma


^cSee Principles of Surgery (SURG-A).

Note: All recommendations are category 2A unless otherwise indicated.

d See Principles of Radiation Therapy (MM-A).

eSee Principles of Systemic Therapy for Advanced or Metastatic Melanoma page ME-E from the NCCN Guidelines for Melanoma.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Mucosal Melanoma

Note: All recommendations are category 2A unless otherwise indicated.

^cSee Principles of Surgery (SURG-A).

d See Principles of Radiation Therapy (MM-A).

eSee Principles of Systemic Therapy for Advanced or Metastatic Melanoma page ME-E from the NCCN Guidelines for Melanoma.

PRIMARY THERAPY FOR OCCULT PRIMARY- MELANOMA (Also see NCCN Guidelines for Occult Primary)

Note: All recommendations are category 2A unless otherwise indicated.

^cSee Principles of Surgery (SURG-A).

dSee Principles of Radiation (MM-A).

PRINCIPLES OF RADIATION THERAPY¹

DEFINITIVE

RT Alone (Unresectable Locally Advanced Melanoma):

- PTV:
- ➤ High Risk: Primary tumor and involved lymph nodes (this includes possible local subclinical infiltration at the primary site and at the high risk level lymph node (s)
 - ♦ 66 Gy (2.2 Gy/fraction) to 70Gy (2.0 Gy/fraction) daily Monday-Friday in 6-7 weeks
- ▶ Low to intermediate risk: Sites suspected of subclinical spread
 - 44-50 Gy (2.0Gy/Fraction) to 54-63 Gy (1.6-1.8Gy/fraction)
- Palliative RT doses and schedules maybe considered

Postoperative

RT:

- Preferred interval between resection and postoperative RT is < 6 weeks.
- PTV
- ➤ High risk: adverse features > 2 nodes, single node > 3cm, extracapsular nodes, recurrence in nodal basin after previous surgery²
 - ♦ 60-66Gy (2.0 Gy/fraction; daily Monday-Friday) in 6-6.5 weeks
- ➤ Low to intermediate risk: sites of suspected subclinical spread
 - 44-50 Gy (2.0 Gy/fraction) to 54-63Gy (1.6-1.8 Gy/fraction)

Note: All recommendations are category 2A unless otherwise indicated.

¹See Radiation Techniques (RAD-A) and (Discussion).

²For recurrences in nodal basin after previous surgery, optional dose schedules include 48-50Gy (2.4-3.0Gy/fraction), 30Gy(6Gy/fraction). (: Burmeister BH, Henderson MA, Ainslie J, et al. Adjuvant radiotherapy versus observation alone for patients at risk of lymph-node field relapse after therapeutic lymphadenectomy for melanoma: a randomised trial. Lancet Oncol 2012;13:589-597; and Ballo MT, Bonnen MD, Garden AS, et al. Adjuvant irradiation for cervical node metastases from melanoma. Cancer 2003;97:1789-1796.).

FOLLOW-UP RECOMMENDATIONS¹

(based on risk of relapse, second primaries, treatment sequelae, and toxicities)

- H&P exam (including a complete head and neck exam; mirror and fiberoptic examination as clinically indicated):²
- ➤ Year 1, every 1-3 mo
- ➤ Year 2, every 2-6 mo
- ➤ Years 3-5, every 4-8 mo
- >> 5 years, every 12 mo
- Post-treatment baseline imaging of primary (and neck, if treated) recommended within 6 mo of treatment³ (category 2B)
- ► Further reimaging as indicated based on signs/symptoms; not routinely recommended for patients without worrisome signs/symptoms.
- Chest imaging as clinically indicated for patients with smoking history (See NCCN Guidelines for Lung Cancer Screening)
- Thyroid-stimulating hormone (TSH) every 6-12 mo if neck irradiated
- Speech/hearing and swallowing evaluation 4 and rehabilitation as clinically indicated
- Smoking cessation⁵ and alcohol counseling as clinically indicated
- Dental evaluation⁶
- > Recommended for oral cavity and sites exposed to significant intraoral radiation treatment
- Consider EBV DNA monitoring for nasopharyngeal cancer

Note: All recommendations are category 2A unless otherwise indicated.

¹Most recurrences are reported by the patient.

²For mucosal melanoma, a physical exam should include endoscopic inspection for paranasal sinus disease.

³For cancer of the oropharynx, hypopharynx, glottic larynx, supraglottic larynx, and nasopharynx: imaging is recommended for T3-4 or N2-3 disease only.

⁴See Principles of Nutrition (NUTR-A).

⁵All current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking. For additional cessation support and resources, smokers can be referred to www.smokefree.org.

⁶See Principles of Dental Evaluation and Management (DENT-A).

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF SURGERY

Evaluation

All patients should be evaluated by a head and neck surgical oncologist prior to treatment to assure the following:

- Review the adequacy of biopsy material, review staging and imaging to determine the extent of disease, exclude the presence of a synchronous primary tumor, assess current functional status, and evaluate for potential surgical salvage if initial treatment is nonsurgical.
- Participate in the multidisciplinary team discussions regarding patient treatment options with the goal of maximizing survival with preservation of form and function.
- Develop a prospective surveillance plan that includes adequate dental, nutritional, and health behavior evaluation and intervention and any other ancillary evaluations that would provide for comprehensive rehabilitation.
- For patients undergoing an operation, the surgical procedure, margins, and reconstructive plan should be developed and designed to resect all gross tumors with adequate tumor-free surgical margins. The surgical procedure should not be modified based upon any response observed as a result of prior therapy except in instances of tumor progression that mandate a more extensive procedure in order to encompass the tumor at the time of definitive resection.

Integration of Therapy

• It is critical that multidisciplinary evaluation and treatment be coordinated and integrated prospectively by all disciplines involved in patient care before the initiation of any treatment.

Assessment of Resectability

Tumor involvement of the following sites is associated with poor prognosis or function* or with T4b cancer (ie, unresectable based on technical ability to obtain clear margins). None of these sites of involvement are absolute contraindications to resection in selected patients in whom total cancer removal is possible:

- Involvement of the pterygoid muscles, particularly when associated with severe trismus or pterygopalatine fossa involvement with cranial neuropathy;*
- Gross extension of the tumor to the skull base (eg, erosion of the pterygoid plates or sphenoid bone, widening of the foramen ovale);
- Direct extension to the superior nasopharynx or deep extension into the Eustachian tube and lateral nasopharyngeal walls;
- Invasion (encasement) of the common or internal carotid artery. Encasement is usually assessed radiographically and defined as a tumor surrounding the carotid artery by 270 degrees or greater;
- Direct extension of neck disease to involve the external skin;*
- Direct extension to mediastinal structures, prevertebral fascia, or cervical vertebrae; and*
- Presence of subdermal metastases.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

^{*}In selected cases, surgery might still be considered.

PRINCIPLES OF SURGERY

Primary Tumor Resection

The resection of advanced tumors of the oral cavity, oropharynx, hypopharynx, larynx, or paranasal sinus will vary in extent depending on the structures involved. The primary tumor should be considered surgically curable by appropriate resection using accepted criteria for adequate excision, depending on the region involved.

- En bloc resection of the primary tumor should be attempted whenever feasible.
- In-continuity neck dissection is necessary when there is direct extension of the primary tumor into the neck.
- Surgical resection should be planned based upon the extent of the primary tumor as ascertained by clinical examination and careful interpretation of appropriate radiographic images.
- For oral cavity cancers, as thickness of the lesion increases, the risk of regional metastases and the need for adjuvant elective neck dissection also increases.
- Perineural invasion should be suspected when tumors are adjacent to motor or sensory nerves. The goal is total cancer resection. When gross invasion is present and the nerve can be resected without significant morbidity, the nerve should be dissected both proximally and distally and should be resected to obtain clearance of disease (See Management of Cranial Nerves page 4 of 9). Frozen section determination of the proximal and distal nerve margins may prove helpful to facilitate tumor clearance.
- Partial or segmental resection of the mandible may be necessary to adequately encompass the cancer with adequate tumor-free margins. Adequate resection may require partial, horizontal, or sagittal resection of the mandible for tumors involving or adherent to mandibular periosteum. Segmental or marginal resection should be considered in tumors that grossly involve mandibular periosteum (as determined by tumor fixation to the mandible) or show evidence of direct tumor involvement of the bone at the time of operation or through preoperative imaging (CT/MRI/Panorex). The extent of mandibular resection will depend on the degree of involvement accessed clinically and in the operating room.
- Medullary space invasion is an indication for segmental resection; Frozen section examination of available marrow may be considered to guide resection.
- For tumors of the larynx, the decision to perform either total laryngectomy or conservation laryngeal surgery (eg, transoral resection, hemilaryngectomy, supraglottic laryngectomy) will be decided by the surgeon but should adhere to the principles of complete tumor extirpation with curative intent and function preservation.
- For maxillary sinus tumors, note that "Ohngren's line" runs from the medial canthus of the eye to the angle of the mandible, helping to define a plane passing through the maxillary sinus. Tumors "below" or "before" this line involve the maxillary infrastructure. Those "above" or "behind" Ohngren's line involve the suprastructure.
- Transoral robotic or laser-assisted resections of primary cancers in the oral cavity, larynx and pharynx are increasingly used approaches for cancer resection in selected patients with limited disease and accessible tumors. Oncologic principles are similar to open procedures.

 Successful application of these techniques requires specialized skills and experience.

Continued on next page

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

SURG-A 2 of 9

Comprehensive NCCN Guidelines Version 2.2014 Cancer Norwerla® Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF SURGERY

Margins

An overarching goal of oncologic surgery is complete tumor resection with histologic verification of tumor-free margins. Margin assessment may be in real time by frozen section or by assessment of formalin-fixed tissues. Tumor-free margins are an essential surgical strategy for diminishing the risk for local tumor recurrence. Conversely, positive margins increase the risk for local relapse and are an indication for postoperative adjuvant therapy. Clinical pathologic studies have demonstrated the significance of close or positive margins and their relationship with local tumor recurrence. When there is an initial cut-through with an invasive tumor at the surgical margin, obtaining additional adjacent margins from the patient may also be associated with a higher risk for local relapse. Obtaining additional margins from the patient is subject to ambiguity regarding whether the tissue taken from the surgical bed corresponds to the actual site of margin positivity. If positive surgical margins are reported, surgical re-resection and/or adjuvant therapy should be considered in selected patients.

Frozen section margin assessment is always at the discretion of the surgeon and should be considered when it will facilitate complete tumor removal. The achievement of adequate wide margins may require resection of an adjacent structure in the oral cavity or laryngopharynx such as the base of tongue and/or anterior tongue, mandible, larynx, or portions of the cervical esophagus.

- Adequate resection is defined as clear resection margins with at least enough clearance from the gross tumor to obtain clear frozen section and permanent margins (often 1.5-2 cm of visible and palpable normal mucosa). However, for glottic cancers, a 1-2 mm. margin is considered adequate. In general, frozen section examination of the margins will usually be undertaken intraoperatively, and importantly, when a line of resection has uncertain clearance because of indistinct tumor margins, or there is suspected residual disease (ie, soft tissue, cartilage, carotid artery, or mucosal irregularity). In transoral laser microsurgery, margins of 1.5-2.0 mm may be achieved with the goal of complete tumor resection with maximal normal tissue preservation. With this approach, adequacy of resection may be uncertain and is assessed under high magnification and confirmed intraoperatively by frozen sections. Such margins would be considered "close" and may be inadequate for certain sites such as oral tongue.
- The details of resection margins should be included in the operative dictation. The margins may be assessed on the resected specimen or alternatively from the surgical bed with proper orientation.
- A clear margin is defined as the distance from the invasive tumor front that is 5 mm or more from the resected margin.
- A close margin is defined as the distance from the invasive tumor front to the resected margin that is less than 5 mm.
- A positive margin is defined as carcinoma in situ or as invasive carcinoma at the margin of resection.
- The primary tumor should be marked in a fashion adequate for orientation by the surgical pathologist. The primary tumor should be assessed histologically for depth of invasion and for distance from the invasive portion of the tumor to the margin of resection, including the peripheral and deep margins. The pathology report should be template driven and describe how the margins were assessed. The report should provide information regarding the primary specimen to include the distance from the invasive portion of the tumor to the peripheral and deep margin. If the surgeon obtains additional margins from the patient, the new margins should refer back to the geometric orientation of the resected tumor specimen with a statement by the pathologist that this is the final margin of resection and its histologic status.
- The neck dissection should be oriented or sectioned in order to identify levels of lymph nodes encompassed in the dissection.
- Reconstruction of surgical defects should be performed using conventional techniques at the discretion of the surgeon. Primary closure is recommended when appropriate but should not be pursued at the expense of obtaining wide, tumor-free margins. Reconstructive closure with local/regional flaps, free-tissue transfer, or split-thickness skin or other grafts with or without mandibular reconstruction is performed at the discretion of the surgeon.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF SURGERY

<u>Surgical Management of Cranial Nerves VII, X (including the recurrent laryngeal nerve), XI, and XII</u>

Operative management of the facial nerve and other major cranial nerves during primary or regional node resection is influenced by the preoperative clinical function of the nerve.

- When the nerve is functioning, thorough efforts should be made to preserve the structure and function of the nerve (main trunk and/or branches)--even if otherwise adequate tumor margins are not achieved--recognizing that the surgeon should leave no gross residual disease.
- Adjuvant postoperative radiation or chemoradiation is generally prescribed when a microscopic residual or gross residual tumor is suspected.
- Direct nerve invasion by a tumor and/or preoperative paralysis of the nerve may warrant segmental resection (and sometimes nerve grafting) at the discretion of the surgeon if tumor-free margins are assured throughout the remainder of the procedure.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF SURGERY

Neck Management

The surgical management of regional lymphatics is dictated by the extent of the tumor at initial tumor staging. These guidelines apply to the performance of neck dissections as part of treatment of the primary tumor. In general, patients undergoing surgery for resection of the primary tumor will undergo dissection of the ipsilateral side of the neck that is at greatest risk for metastases.

• Tumor sites that frequently have bilateral lymphatic drainage (eg, base of tongue, palate, supraglottic larynx, deep space pre-epiglottic involvement) often should have both sides of the neck dissected with the extent of dissection determined as suggested below. For those patients with tumors at or approaching the midline, both sides of the neck are at risk for metastases, and bilateral neck dissections should be performed. Elective neck dissection may not be recommended if postoperative radiation is planned.

Patients with advanced lesions involving the anterior tongue, floor of the mouth or lip that approximate or cross the midline should undergo contralateral submandibular dissection as necessary to achieve adequate tumor resection.

- Elective neck dissection should be based on risk of occult metastasis in the appropriate nodal basin. For oral cavity squamous cell carcinoma, the depth of invasion is currently the best predictor of occult metastatic disease and should be used to guide decision making. For tumors with a depth greater than 4 mm, elective dissection should be strongly considered if RT is not already planned. For a depth less than 2 mm, elective dissection is only indicated in highly selective situations. For a depth of 2 to 4 mm, clinical judgment (as to reliability of follow-up, clinical suspicion, and other factors) must be utilized to determine appropriateness of elective dissection. Elective dissections are generally selective, preserving all major structures, unless operative findings dictate otherwise.
- The type of neck dissection (comprehensive or selective) is defined according to preoperative clinical staging, is determined at the discretion of the surgeon, and is based on the initial preoperative staging as follows:

N0 Selective neck dissection

- -Oral cavity at least levels I-III
- -Oropharynx at least levels II-IV
- -Hypopharynx at least levels II-IV and level VI when appropriate.
- -Larynx at least levels II-IV and level VI when appropriate

N1-N2a-c Selective or comprehensive neck dissection (See Discussion)

N3 Comprehensive neck dissection

• Level VI neck dissections are performed for certain primary sites (such as the larynx and hypopharynx) as required to resect the primary tumor and any clinically evident neck nodes. Elective dissection depends on primary tumor extent and site. Subglottic laryngeal cancers are sites where elective level VI dissections are often considered appropriate.

Continued on next page

Note: All recommendations are category 2A unless otherwise indicated.

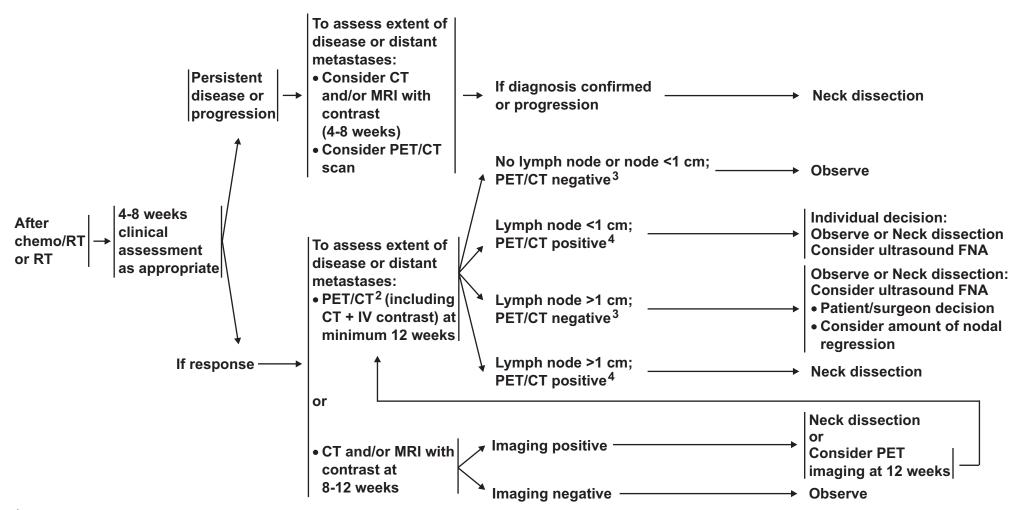
PRINCIPLES OF SURGERY

Sentinel Lymph Node Biopsy

- Sentinel lymph node biopsy is an alternative to elective neck dissection for identifying occult cervical metastasis in patients with early (T1 or T2) oral cavity carcinoma in centers where expertise for this procedure is available. Its advantages include reduced morbidity and an improved cosmetic outcome. Rates of detection of sentinel nodes in excess of 95% have been widely reported. Accuracy with metastatic disease in their sentinel nodes must undergo a completion neck dissection while those without may be observed. Accuracy of sentinel node biopsy for nodal staging of early oral carcinoma has been tested extensively in multiple single-center studies and two multi-institutional trials against the reference standard of immediately performed neck dissection or subsequent extended follow-up with a pooled estimate of sensitivity of 0.93 and negative predictive values ranging from 0.88 to 1.4-9 While direct comparisons with the policy of elective neck dissection are lacking, available evidence points towards comparable survival outcomes.9
- Sentinel node biopsy is a technically demanding procedure. Procedural success rates for sentinel node identification as well as accuracy of detecting occult lymphatic metastasis depend on technical expertise and experience. Hence, sufficient caution must be exercised when offering it as an alternative to elective neck dissection. This is particularly true in cases of floor-of-mouth cancer where accuracy of sentinel node biopsy has been found to be lower than for other locations such as the tongue. ^{4,5} Also, cancers of certain locations such as upper gingiva and hard palate may not lend themselves well technically to this procedure.

PRINCIPLES OF SURGERY

Management of Recurrences


Surgically resectable primary cancers should be re-resected with curative intent if feasible, and recurrences in a previously treated neck should undergo surgical salvage, as well. Neck disease in an untreated neck should be addressed by formal neck dissection or modification depending on the clinical situation. Non-surgical therapy may also be utilized as clinically appropriate.

Surveillance

All patients should have regular follow-up visits to assess for symptoms and possible tumor recurrence, health behaviors, nutrition, dental health, and speech and swallowing function.

- Tumor evaluations must be performed by specialists skilled in head and neck clinical examination.
- The frequency of evaluation is summarized elsewhere in the NCCN Guidelines for Head and Neck Cancers (See Follow-up Recommendations [FOLL-A]).
- For post chemoradiation or RT neck evaluations (See Principles of Surgery: [Post Chemoradiation or RT Neck Evaluation [SURG-A 7 of 7]).

PRINCIPLES OF SURGERY (POST CHEMORADIATION OR RT NECK EVALUATION)¹

Adapted with permission from Kutler DI, Patel SG, Shah JP. The role of neck dissection following definitive chemoradiation. Oncology 2004;18:993-998.

⁴PET positive = PET suspicious for disease.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

²If a PET/CT is performed and negative for suspicion of persistent cancer, further cross-sectional imaging is optional.

³PET negative = No or low-grade uptake, felt not suspicious for disease.

PRINCIPLES OF SURGERY (REFERENCES)

- ¹Looser KG, Shah JP, Strong EW. The significance of "positive" margins in surgically resected epidermoid carcinomas. Head Neck Surg 1978;1:107-111.
- ²Scholl P, Byers RM, Batsakis JG, et al. Microscopic cut-through of cancer in the surgical treatment of squamous carcinoma of the tongue. Prognostic and therapeutic implications. Am J Surg 1986;152:354-360.
- ³Hinni ML, Zarka MA, Hoxworth JM. Margin mapping in transoral surgery for head and neck cancer. Laryngoscope 2013;123:1190-1198.
- ⁴Civantos FJ, Zitsch RP, Schuller DE et al. Sentinel lymph node biopsy accurately stages the regional lymph nodes for T1-T2 oral squamous cell carcinomas: results of a prospective multi-institutional trial. J Clin Oncol. 2010;28:1395-400.
- ⁵Alkureishi LW, Ross GL, Shoaib T et al. Sentinel node biopsy in head and neck squamous cell cancer: 5-year follow-up of a European multicenter trial. Ann Surg Oncol. 2010:17:2459-2464.
- ⁶Govers TM, Hannink G, Merkx MA, Takes RP, Rovers MM. Sentinel node biopsy for squamous cell carcinoma of the oral cavity and oropharynx: A diagnostic meta-analysis. Oral Oncol. 2013;49:726-732.
- ⁷Pezier T, Nixon IJ, Gurney B et al. Sentinel Lymph Node Biopsy for T1/T2 Oral Cavity Squamous Cell Carcinoma-A Prospective Case Series. Ann Surg Oncol 2012;19:3528-3533.
- ⁸Broglie MA, Haerle SK, Huber GF, Haile SR, Stoeckli SJ. Occult metastases detected by sentinel node biopsy in patients with early oral and oropharyngeal squamous cell carcinomas: impact on survival. Head Neck. 2013;35:660-666.
- ⁹Samant S. Sentinel node biopsy as an alternative to elective neck dissection for staging of early oral carcinoma. Head Neck 2013 Jun 1 Epub ahead of print.

Note: All recommendations are category 2A unless otherwise indicated.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

RADIATION TECHNIQUES¹⁻⁸

Target delineation and optimal dose distribution require experience in head and neck imaging and a thorough understanding of patterns of disease spread. Standards for target definition, dose specification, fractionation (with and without concurrent chemotherapy), and normal tissue constraints are still evolving. IMRT or other conformal techniques may be used as appropriate depending on the stage, tumor location, physician training/experience, and available physics support.* Close interplay exists between radiation technology, techniques, fractionation, and chemotherapy options resulting in a large number of combinations that may impact toxicity or tumor control. Close cooperation and interdisciplinary management are critical to treatment planning and radiation targeting, especially in the postoperative setting or after induction chemotherapy.⁹

Intensity-Modulated Radiation Therapy (IMRT)

IMRT has been shown to be useful in reducing long-term toxicity in oropharyngeal, paranasal sinus, and nasopharyngeal cancers by reducing the dose to salivary glands, temporal lobes, auditory structures (including cochlea), and optic structures. The application of IMRT to other sites (eg, oral cavity, larynx, hypopharynx, salivary glands) is evolving and may be used at the discretion of treating physicians.

IMRT and Fractionation 10-12

A number of ways exist to integrate IMRT, target volume dosing, and fractionation. The Simultaneous Integrated Boost (SIB) technique uses differential "dose painting" (66-74 Gy to gross disease; 50-60 Gy to subclinical disease) for each fraction of treatment throughout the entire course of radiation. SIB is commonly used in the conventional (5 fractions/week) and the "6 fractions/week accelerated" schedule. The Sequential (SEQ) IMRT technique typically delivers the initial (lower dose) phase (weeks 1-5) followed by the high-dose boost volume phase (weeks 6-7) using 2-3 separate dose plans, and is commonly applied in standard fractionation and hyperfractionation. The Concomitant Boost Accelerated schedule may utilize a "Modified SEQ" dose plan by delivering the dose to the subclinical targets once a day for 6 weeks, and a separate boost dose plan as a second daily fraction for the last 12 treatment days.

Note: All recommendations are category 2A unless otherwise indicated.

^{*}For additional resources regarding the technical details of radiation, see the American College of Radiology Guidelines: http://www.acr.org/Quality-Safety/Appropriateness-Criteria/Oncology/Head-Neck.

RADIATION TECHNIQUES*

Palliative Radiation

- Palliative radiation should be considered in the advanced cancer setting when curative-intent treatment is not appropriate.
- No general consensus exists for appropriate palliative RT regimens in head and neck cancer. For those who are either medically unsuitable for standard RT or have widely metastatic disease, palliative RT should be considered for relief or prevention of locoregional symptoms if the RT toxicities are acceptable. RT regimens should be tailored individually; severe RT toxicities should be avoided when treatment is for palliation. Recommended RT regimens include:
- ➤ 50 Gy in 20 fractions: 13

National

Cancer

Network®

- > 37.5 Gy in 15 fractions (if well tolerated, consider adding 5 additional fractions to 50 Gy);
- ➤ 30 Gy in 10 fractions;
- > 30 Gy in 5 fractions:** give 2 fractions/week with ≥3 days between the 2 treatments; and 14
- > 44.4 Gy in 12 fractions, in 3 cycles (for each cycle, give 2 fractions six hours apart for 2 days in a row, and treatments must exclude the spinal cord after second cycle)¹⁵
- While the use of shorter treatment courses is encouraged, the dose tolerance of the spinal cord and neural structures must be evaluated carefully in light of fraction size.
- Carefully evaluate the patient's performance, treatment tolerance, tumor response, and/or any systemic progression. Other palliative/supportive care measures include analgesics, nutrition support, targeted therapy, or salvage chemotherapy, if indicated (see the **NCCN** Guidelines for Supportive Care).

Note: All recommendations are category 2A unless otherwise indicated.

^{*}For additional resources regarding the technical details of radiation, see the American College of Radiology Guidelines: http://www.acr.org/Quality-Safety/Appropriateness-Criteria/Oncology/Head-Neck.

^{**}For end-stage disease, patients can be given more hypofractionated schedules because of the very limited prognosis.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

RADIATION TECHNIQUES

(References)

- ¹Dogan N, King S, Emami B, et al. Assessment of different IMRT boost delivery methods on target coverage and normal-tissue sparing. Int J Radiat Oncol Biol Phys 2003;57(5):1480-1491.
- ²Lee NY, de Arruda FF, Puri DR, et al. A comparison of intensity-modulated radiation therapy and concomitant boost radiotherapy in the setting of concurrent chemotherapy for locally advanced oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2006;66(4):966-974.
- ³Lee NY, O'Meara W, Chan K, et al. Concurrent chemotherapy and intensity-modulated radiotherapy for locoregionally advanced laryngeal and hypopharyngeal cancers. Int J Radiat Oncol Biol Phys 2007;69(2):459-468.
- ⁴Wu Q, Mohan R, Morris M, et al. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol Biol Phys 2003;56:573-585.
- ⁵Overgaard J, Hansen HS, Specht L, et al. Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled trial. Lancet 2003;362(9388):933-940.
- ⁶Schoenfeld GO, Amdur RJ, Morris CG, et al. Patterns of failure and toxicity after intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 2008;71(2):377-385. Epub 2007 Dec 31.
- ⁷Wolden SL, Chen WC, Pfister DG, et al. Intensity-modulated radiation therapy (IMRT) for nasopharynx cancer: update of the Memorial Sloan-Kettering experience. Int J Radiat Oncol Biol Phys 2006;64(1):57-62.
- ⁸Wu Q, Manning M, Schmidt-Ullrich R, Mohan R. The potential for sparing of parotids and escalation of biologically effective dose with intensity-modulated radiation treatments of head and neck cancers: a treatment design study. Int J Radiat Oncol Biol Phys 2000;46(1):195-205.
- ⁹Salama JK, Haddad RI, Kies MS, et al. Clinical Practice Recommendations for Radiotherapy Planning following Induction Chemotherapy in Locoregionally Advanced Head and Neck Cancer. Int J Radiat Oncol Biol Phys 2009 75(3):725-733.
- ¹⁰Hartford AC, Palisca MG, Eichler TJ, et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guidelines for intensity-modulated radiation therapy (IMRT). Int J Radiat Oncol Biol Phys. 2009;73(1):9-14.
- ¹¹IMRT Documentation Working Group, Holmes T, Das R, Low D, et al. American Society of Radiation Oncology recommendations for documenting intensity-modulated radiation therapy treatments. Int J Radiat Oncol Biol Phys. 2009;74(5):1311-1318.
- ¹²International Commission on Radiation Units and Measurements. ICRU Report 83: Prescribing, Recording, and Reporting Intensity-Modulated Photon-Beam Therapy (IMRT). ICRU Report 83: 2010.
- ¹³Stevens CM, Huang SH, Fung S, et al. Retrospective study of palliative radiotherapy in newly diagnosed head and neck carcinoma. Int J Radiat Oncol Biol Phys 2011; 81:958-963.
- ¹⁴Porceddu SV, Rosser B, Burmeister BH, et al. Hypofractioned radiotherapy for the palliation of advanced head and neck cancer in patients unsuitable for curative treatment-"Hypo Trial". Radiother Oncol 2007;85:456-462.
- ¹⁵Paris KJ, Spanos WJ Jr, Lindberg RD, et al. Phase I-II study of multiple daily fractions for palliation of advanced head and neck malignancies. Int J Radiat Oncol Biol Phys 1993;25:657-660.

Note: All recommendations are category 2A unless otherwise indicated.

Comprehensive NCCN Guidelines Version 2.2014 Head and Neck Cancers

NCCN Guidelines Index Head and Neck Table of Contents Discussion

PRINCIPLES OF SYSTEMIC THERAPY

The choice of chemotherapy should be individualized based on patient characteristics (PS, goals of therapy).

- The standard chemoradiotherapy approach for fit patients with locally advanced disease remains concurrent cisplatin and radiotherapy.
- Cisplatin-based induction chemotherapy can be used, followed by radiation-based locoregional treatment (ie, sequential chemoRT). However, an improvement in overall survival with the incorporation of induction chemotherapy compared to proceeding directly to state of the art concurrent chemoRT (cisplatin preferred, category 1) has not been established. Randomized phase III studies comparing sequential chemotherapy/RT to concurrent chemotherapy/RT alone are ongoing and have not demonstrated a convincing survival benefit with the incorporation of induction chemotherapy.
- Cisplatin-based induction chemotherapy followed by high-dose, every-3-week cisplatin chemoradiotherapy is not recommended due to toxicity concerns. 1,2
- After induction chemotherapy, multiple options can be used for the radiation-based portion of therapy. Radiotherapy alone versus radiotherapy plus weekly carboplatin or cetuximab are among the options.

Squamous Cell Cancers

Lip, Oral Cavity, Oropharynx, Hypopharynx, Glottic Larynx,

- Primary systemic therapy + concurrent RT
- ► High-dose cisplatin^{3,4} (preferred) (category 1)
- ➤ Cetuximab⁵ (category 1)
- ➤ Carboplatin/infusional 5-FU (category 1)^{6,7}
- ▶ 5-FU/hydroxyurea⁸
- ➤ Cisplatin/paclitaxel⁸
- ➤ Cisplatin/infusional 5-FU⁹
- ➤ Carboplatin/paclitaxel¹⁰ (category 2B)
- ➤ Weekly cisplatin 40 mg/m² (category 2B)^{11,12}
- Postoperative chemoradiation
- ➤ Cisplatin¹³⁻¹⁷ (category 1 for high risk)

Nasopharynx:

- Chemoradiation followed by adjuvant chemotherapy
- ➤ Cisplatin + RT followed by cisplatin/5-FU^{18,19} or carboplatin/5-FU²⁰ (category 2B for carboplatin/5-FU)
- ➤ Cisplatin + RT without adjuvant chemotherapy²¹

Lip, Oral Cavity, Oropharynx, Hypopharynx, Glottic Larynx, Supraglottic Larynx, Ethmoid Sinus, Maxillary Sinus, Occult Primary: Supraglottic Larynx, Ethmoid Sinus, Maxillary Sinus, Occult Primary:

- Induction*/Sequential chemotherapy
- ➤ Docetaxel/cisplatin/5-FU²²⁻²⁴ (category 1 if induction is chosen)
- ➤ Paclitaxel/cisplatin/infusional 5-FU²⁵
- > Following induction, agents to be used with concurrent chemoradiation typically include weekly carboplatin or cetuximab. 1,26,27

Nasopharynx:

- Induction (category 3)/Sequential chemotherapy
- ➤ Docetaxel/cisplatin/5-FU²⁸
- ➤ Docetaxel/cisplatin (category 2B)²⁹
- ➤ Cisplatin/5-FU²³
- ➤ Cisplatin/epirubicin/paclitaxel
- > Following induction, agents to be used with concurrent chemoradiation typically include weekly cisplatin 19 or carboplatin 26

*The categories of evidence and consensus for induction therapy vary depending on site. (See disease specific site in the Head and Neck Table of Contents)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

PRINCIPLES OF SYSTEMIC THERAPY

- The choice of chemotherapy should be individualized based on patient characteristics (PS, goals of therapy).
- Unless otherwise specified, regimens listed below can be used for either nasopharyngeal or non-nasopharyngeal cancer.

Recurrent, Unresectable, or Metastatic (incurable)

- Combination therapy
- ➤ Cisplatin or carboplatin + 5-FU + cetuximab³⁰ (non-nasopharyngeal) (category 1)
- ➤ Cisplatin or carboplatin + docetaxel³¹ or paclitaxel³²
- ➤ Cisplatin/cetuximab³³ (non-nasopharyngeal)
 ➤ Cisplatin/5-FU^{32,34}

- Cisplatin/docetaxel/cetuximab³⁵ (non-nasopharyngeal)
 Cisplatin/paclitaxel/cetuximab^{36,37} (non-nasopharyngeal)
- ➤ Carboplatin/cetuximab 38 (nasopharyngeal)
- Cisplatin/gemcitabine ³⁹ (nasopharyngeal)
 Gemcitabine/vinorelbine ⁴⁰ (nasopharyngeal)
- Single agents
- ➤ Cisplatin ^{33,41}
- ➤ Carboplatin⁴²
- ➤ Paclitaxel⁴³
- ➤ Docetaxel 44,45
- ► 5-FU⁴¹
- ➤ Methotrexate 46,47
- Cetuximab⁴⁸ (non-nasopharyngeal)
 Ifosfamide⁴⁹ (category 2B)
 Bleomycin^{50,51} (category 2B)

- ➤ Gemcitabine⁵² (nasopharyngeal)
- ➤ Capecitabine 53
- ➤ Vinorelbine ^{54,55} (non-nasopharyngeal)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

See References on page CHEM-A 3 of 5

Comprehensive NCCN Guidelines Version 2.2014 Cancer Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF SYSTEMIC THERAPY (REFERENCES)

- ¹Lefebvre JL, Pointreau Y, Rolland F, et al. Induction chemotherapy followed by either chemoradiotherapy or bioradiotherapy for larynx preservation: the TREMPLIN randomized phase II study. J Clin Oncol 2013;31:853-859.
- ²Adelstein DJ, Moon J, Hanna E, et al. Docetaxel, cisplatin, and fluorouracil induction chemotherapy followed by accelerated fractionation/concomitant boost radiation and concurrent cisplatin in patients with advanced squamous cell head and neck cancer: A Southwest Oncology Group phase II trial (S0216). Head Neck. 2010;32:221-228.
- ³Forastiere AA, Zhang Q, Weber RS, et al. Long-term results of RTOG 91-11: a comparison of three nonsurgical treatment strategies to preserve the larynx in patients with locally advanced larynx cancer. J Clin Oncol. 2013;31:845-852.
- ⁴Adelstein DJ, Li Y, Adams GL, et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol 2003;21(1):92-98.
- ⁵Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 2010;11:21-28.
- ⁶Denis F, Garaud P, Bardet E, et al. Final results of the 94-01 French Head and Neck Oncology and Radiotherapy Group randomized trial comparing radiotherapy alone with concomitant radiochemotherapy in advanced-stage oropharynx carcinoma. J Clin Oncol 2004;22:69-76.
- ⁷Bourhis J, Sire C, Graff P, et al. Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02): an open-label phase 3 randomised trial. Lancet Oncol. 2012;13:145-153.
- ⁸Garden AS, Harris J, Vokes EE, et al. Preliminary results of Radiation Therapy Oncology Group 97-03: A randomized phase II trial of concurrent radiation and chemotherapy for advanced squamous cell carcinomas of the head and neck.

 J Clin Oncol 2004;22:2856-2864.
- ⁹Taylor S, Murthy A, Vannetzel J, et al. Randomized comparison of neoadjuvant cisplatin and fluorouracil infusion followed by radiation versus concomitant treatment in advanced head and neck cancer. J Clin Oncol 1994:12:385-395.
- ¹⁰Suntharalingam M, Haas ML, Conley BA, et al. The use of carboplatin and paclitaxel with daily radiotherapy in patients with locally advanced squamous cell carcinomas of the head and neck. Int J Radiat Oncol Biol Phys 2000;47:49-56.
- ¹¹Beckmann GK, Hoppe F, Pfreundner L, et al. Hyperfractionated accelerated radiotherapy in combination with weekly cisplatin for locally advanced head and neck cancer. Head Neck 2005;27:36-43.
- ¹²Medina JA, Rueda A, de Pasos AS, et al. A phase II study of concomitant boost radiation plus concurrent weekly cisplatin for locally advanced unresectable head and neck carcinomas. Radiother Oncol 2006;79:34-38.
- ¹³Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 2004;350:1937-1944.
- ¹⁴Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 2004;350:1945-1952.
- ¹⁵Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck 2005;27:843-850.
- ¹⁶Bachaud JM, Cohen-Jonathan E, Alzieu C, et al. Combined postoperative radiotherapy and weekly cisplatin infusion for locally advanced head and neck carcinoma: final report of a randomized trial. Int J Radiat Oncol Biol Phys 1996 Dec 1;36:999-1004.
- ¹⁷Cooper JS, Zhang Q, Pajak TF, et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2012;84:1198-1205.

Note: All recommendations are category 2A unless otherwise indicated.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Norwerla® Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF SYSTEMIC THERAPY (REFERENCES)

- ¹⁸Al-Sarraf M, LeBlanc M, Giri PG, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol 1998;16:1310-1317.
- ¹⁹Chan AT, Leung SF, Ngan RK, et al. Overall survival after concurrent cisplatin-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst 2005;97:536-539.
- ²⁰Dechaphunkul T, Pruegsanusak K, Sangthawan D, et al. Concurrent chemoradiotherapy with carboplatin followed by carboplatin and 5- fluorouracil in locally advanced nasopharyngeal carcinoma. Head Neck Oncol 2011;3:30.
- ²¹Chen L, Hu CS, Chen XZ, et al. Concurrent chemoradiotherapy plus adjuvant chemotherapy versus concurrent chemoradiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 3 multicentre randomised controlled trial. Lancet Oncol 2012;13:163-171.
- ²²Vermorken JB, Remenar E, van Herpen C, et al; EORTC 24971/TAX 323 Study Group. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med 2007;357(17):1695-1704.
- ²³Posner MR, Hershock DM, Blajman CR, et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med 2007;357(17):1705-1715.
- ²⁴Pointreau Y, Garaud P, Chapet S, et al. Randomized trial of induction chemotherapy with cisplatin and 5-fluorouracil with or without docetaxel for larynx preservation. J Natl Cancer Inst 2009;101:498-506.
- ²⁵Hitt R, López-Pousa A, Martínez-Trufero J, et al. Phase III study comparing cisplatin plus fluorouracil to paclitaxel, cisplatin, and fluorouracil induction chemotherapy followed by chemoradiotherapy in locally advanced head and neck cancer. J Clin Oncol. 2005;23:8636-8645.
- ²⁶Chitapanarux I, Lorvidhaya V, Kamnerdsupaphon P, et al. Chemoradiation comparing cisplatin versus carboplatin in locally advanced nasopharyngeal cancer: Randomised, non-inferiority, open trial. Eur J Cancer 2007;43:1399-1406.
- ²⁷Haddad R, O'Neill A, Rabinowits G, et al. Induction chemotherapy followed by concurrent chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): a randomised phase 3 trial. Lancet Oncol 2013;14:257-264.
- ²⁸Bae WK, Hwang JE, Shim HJ, et al. Phase II study of docetaxel, cisplatin and 5FU induction chemotherapy followed by chemoradiotherapy in locoregionally advanced npc. Cancer Chem other Pharmacol 2010; 65:589-595.
- ²⁹Hui EP, Ma BB, Leung SF, et al. Randomized phase II trial of concurrent cisplatin-radiotherapy with or without neoadjuvant docetaxel and cisplatin in advanced nasopharyngeal carcinoma. J Clin Oncol 2009;27:242-249.
- ³⁰Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 2008;359:1116-1127.
- ³¹Samlowski WE, Moon J, Kuebler JP, et al. Evaluation of the combination of docetaxel/carboplatin in patients with metastatic or recurrent squamous cell carcinoma of the head and neck (SCCHN): a Southwest Oncology Group Phase II study. Cancer Invest 2007;25:182-188.
- ³²Gibson MK, Li Y, Murphy B, et al. Randomized phase III evaluation of cisplatin plus fluorouracil versus cisplatin plus paclitaxel in advanced head and neck cancer (E1395): An Intergroup Trial of the Eastern Cooperative Oncology Group. J Clin Oncol 2005;23:3562-3567.
- ³³Burtness B, Goldwasser MA, Flood W, et al. Phase III randomized trial of cisplatin plus placebo versus cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: An Eastern Cooperative Oncology Group Study. J Clin Oncol 2005;23:8646-8654.
- ³⁴Forastiere AA, Metch B, Schuller DE, et al. Randomized comparison of cisplatin plus flurouracil and carboplatin plus fluorouracil versus methotrexate in advanced squamous cell carcinoma of the head and neck: A Southwest Oncology Group Study. J Clin Oncol 1992;10:1245-1251.
- ³⁵Guigay J, Fayette J, Dillies A-F, et al. Cetuximab, docetaxel, and cisplatin (TPEx) as first-line treatment in patients with recurrent or metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN): Final results of phase II trial GORTEC 2008-03 [abstract]. J Clin Oncol 2012;30(Suppl 15):Abstract 5505.
- ³⁶Price KA, Cohen EE. Current treatment options for metastatic head and neck cancer. Curr Treat Options Oncol 2012;13:35-46.
- ³⁷Herbst RS, Arquette M, Shin DM, et al. Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol 2005;23:5578-5587.)

Note: All recommendations are category 2A unless otherwise indicated.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF SYSTEMIC THERAPY (REFERENCES)

- ³⁸Chan AT, Hsu MM, Goh BC, et al. Multicenter, phase II study of cetuximab in combination with carboplatin in patients with recurrent or metastatic nasopharyngeal carcinoma. J Clin Oncol 2005;23:3568-3576.
- ³⁹ Jin Y, Cai XY, Shi YX, et al. Comparison of five cisplatin-based regimens frequently used as the first-line protocols in metastatic nasopharyngeal carcinoma. J Cancer Res Clin Oncol. 2012 Oct;138(10):1717-25.
- ⁴⁰Chen C, Wang FH, Wang ZQ, et al. Salvage gemcitabine-vinorelbine chemotherapy in patients with metastatic nasopharyngeal carcinoma pretreated with platinum-based chemotherapy. Oral Oncol 2012;48:1146-1151.
- ⁴¹ Jacobs C, Lyman G, Velez-García E, et al. A phase III randomized study comparing cisplatin and fluorouracil as single agents and in combination for advanced squamous cell carcinoma of the head and neck J Clin Oncol 1992;10:257-263.
- ⁴²Al-Sarraf M, Metch B, Kish J, et al. Platinum analogs in recurrent and advanced head and neck cancer: a Southwest Oncology Group and Wayne State University Study. Cancer Treat Rep 1987;71:732-736.
- ⁴³Grau JJ, Caballero M, Verger E, et al. Weekly paclitaxel for platin-resistant stage IV head and neck cancer patients. Acta Otolaryngol 2009;129;1294-1299.
- ⁴⁴Catimel G, Verweij J, Mattijssen V, et al. Docetaxel (Taxotere): an active drug for the treatment of patients with advanced squamous cell carcinoma of the head and neck. EORTC Early Clinical Trials Group. Ann Oncol 1994;5:533-537.
- ⁴⁵Guardiola E, Peyrade F, Chaigneau L, et al. Results of a randomised phase II study comparing docetaxel with methotrexate in patients with recurrent head and neck cancer. Eur J Cancer 2004;40:2071-2076.
- ⁴⁶Stewart JS, Cohen EE, Licitra L, et al. Phase III study of gefitinib compared with intravenous methotrexate for recurrent squamous cell carcinoma of the head and neck [corrected]. J Clin Oncol 2009;27:1864-1871.
- ⁴⁷Forastiere AA, Metch B, Schuller DE, et al. Randomized comparison of cisplatin plus fluorouracil and carboplatin plus fluorouracil versus methotrexate in advanced squamous-cell carcinoma of the head and neck: a Southwest Oncology Group study. J Clin Oncol 1992;10:1245-1251.
- ⁴⁸Vermorken JB, Trigo J, Hitt R, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol 2007;25:2171-2177.
- ⁴⁹Martín M, Diaz-Rubio E, González Larriba JL, et al. Ifosfamide in advanced epidermoid head and neck cancer. Cancer Chemother Pharmacol 1993;31:340-342.
- ⁵⁰Eschwege F, Sancho-Garnier H, Gerard JP, et al. Ten-year results of randomized trial comparing radiotherapy and concomitant bleomycin to radiotherapy alone in epidermoid carcinomas of the oropharynx: experience of the European Organization for Research and Treatment of Cancer. NCI Monogr 1988;(6):275-278.
- ⁵¹Minatel E, Gigante M, Franchin G, et al. Combined radiotherapy and bleomycin in patients with inoperable head and neck cancer with unfavourable prognostic factors and severe symptoms. Oral Oncol 1998;34:119-122.
- ⁵²Zhang L, Zhang Y, Huang PY, et al. Phase II clinical study of gemcitabine in the treatment of patients with advanced nasopharyngeal carcinoma after the failure of platinum-based chemotherapy. Cancer Chemother Pharmacol 2008;61:33-38. Epub 2007 Mar 20.
- ⁵³Martinez-Trufero J, Isla D, Adansa JC, et al. Phase II study of capecitabine as palliative treatment for patients with recurrent and metastatic squamous head and neck cancer after previous platinum-based treatment. Br J Cancer 2010;102:1687-1691.)
- ⁵⁴Degardin M, Oliveira J, Geoffrois L, et al. An EORTC-ECSG phase II study of vinorelbine in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Ann Oncol 1998;9:1103-1107.
- ⁵⁵Saxman S, Mann B, Canfield V, et al. A phase II trial of vinorelbine in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Am J Clin Oncol 1998;21:398-400.

Note: All recommendations are category 2A unless otherwise indicated.

PRINCIPLES OF NUTRITION: MANAGEMENT AND SUPPORTIVE CARE 1-3

Most head and neck cancer patients lose weight as a result of their disease, health behaviors, and treatment-related toxicities. Nutritional management is very important in head and neck cancer patients to improve outcomes and to minimize significant temporary or permanent treatment-related complications (eg, severe weight loss). It is recommended that the multidisciplinary evaluation of head and neck cancer patients include a registered dietitian and a speech-language/swallowing therapist.

Assessment and Management

Nutrition

- ➤ Close monitoring of nutritional status is recommended in patients who have: 1) significant weight loss (>10% body weight); and/or 2) difficulty swallowing because of pain or tumor involvement prior to treatment. All patients should be evaluated for nutritional risks and should receive nutrition counseling by a registered dietitian and/or indicated treatment with various nutrition interventions, such as feeding tubes (eg, nasogastric [NG] tubes, percutaneous endoscopic gastrostomy [PEG] tubes) or intravenous nutrition support (but only if enteral support is not feasible).
- > Pre- and post-treatment functional evaluation including nutritional status should be undertaken using either subjective or objective assessment tools. All patients should receive dietary counseling with the initiation of treatment, especially with radiotherapy-based treatments. Regular follow-up with the registered dietitian should continue at least until the patient has achieved a nutritionally stable baseline following treatment. For some patients with chronic nutritional challenges, this follow-up should be ongoing.

Speech and Swallowing

➤ A formal speech and swallowing evaluation at baseline is recommended: 1) for patients with speech and/or swallowing dysfunction; or 2) for patients whose treatment is likely to affect speech and/or swallowing. Patients with ongoing abnormal function should be seen regularly by speech-language pathologists. Dysphagia and swallowing function can be measured by clinical swallowing assessments or by videofluoroscopic swallowing studies. Patient quality-of-life evaluations should also include assessment for any changes in speech and communication; changes in taste; and assessment for xerostomia, pain, and trismus. Follow-up with the speech-language pathologist should continue at least until the patient has achieved a stable baseline following treatment. For some patients with chronic speech and swallowing challenges, this follow-up may need to be indefinite.

Note: All recommendations are category 2A unless otherwise indicated.

¹Ehrsson YT, Langius-Eklöf A, Laurell G. Nutritional surveillance and weight loss in head and neck cancer patients. Support Care Cancer 2012;20:757-765.

²Locher JL, Bonner JA, Carroll WR, et al. Prophylactic percutaneous endoscopic gastrostomy tube placement in treatment of head and neck cancer: a comprehensive review and call for evidence-based medicine. JPEN J Parenter Enteral Nutr 2011;35:365-374.

³Langius JA, van Dijk AM, Doornaert P, et al. More than 10% weight loss in head and neck cancer patients during radiotherapy is independently associated with deterioration in quality of life. Nutr Cancer 2013;65:76-83.

PRINCIPLES OF NUTRITION: MANAGEMENT AND SUPPORTIVE CARE 1-3

Use of Alternative Routes for Nutrition (NG and PEG Tubes)

National

Cancer

Network®

- The panel does not recommend prophylactic PEG or NG tube placement in patients with very good PS and without significant pretreatment weight loss, significant airway obstruction, or severe dysphagia. However, these patients will need encouragement to monitor their caloric intake and to assess for changes in body weight during treatment. They also may need temporary tube feeding intervention during and/or after treatment.
- Prophylactic feeding tube placement should be strongly considered for patients with:
- ➤ Severe weight loss prior to treatment, 5% weight loss over prior 1 month, or 10% weight loss over 6 months;
- > Ongoing dehydration or dysphagia, anorexia, or pain interfering with the ability to eat/drink adequately;
- > Significant comorbidities that may be aggravated by poor tolerance of dehydration, lack of caloric intake, or difficulty swallowing necessary medications:
- > Severe aspiration; or mild aspiration in elderly patients or in patients who have compromised cardiopulmonary function; or
- > Patients for whom long-term swallowing disorders are likely, including those anticipated to receive large fields of high-dose radiation to the mucosa and adjacent connective tissues. However, consideration of other risk factors for swallowing dysfunction must be taken into account as well.
- To maintain swallowing function during and following treatment (eg, radiation), patients who may have feeding tube placement should be encouraged to intake orally if they can swallow without aspiration or any other compromises. Alterations in swallowing function can occur long after treatment (especially after radiation-based treatment) and should be monitored for the lifetime of the patient.

Note: All recommendations are category 2A unless otherwise indicated.

¹Ehrsson YT. Langius-Eklöf A. Laurell G. Nutritional surveillance and weight loss in head and neck cancer patients. Support Care Cancer 2012;20:757-765.

²Locher JL, Bonner JA, Carroll WR, et al. Prophylactic percutaneous endoscopic gastrostomy tube placement in treatment of head and neck cancer: a comprehensive review and call for evidence-based medicine. JPEN J Parenter Enteral Nutr 2011;35:365-374.

³Langius JA, van Dijk AM, Doornaert P, et al. More than 10% weight loss in head and neck cancer patients during radiotherapy is independently associated with deterioration in quality of life. Nutr Cancer 2013;65:76-83.

PRINCIPLES OF DENTAL EVALUATION AND MANAGEMENT

Radiation therapy to the head and neck causes xerostomia and salivary gland dysfunction which dramatically increases the risk of dental caries and its seguelae, including dentoalveolar infection and osteoradionecrosis. Radiation therapy also affects the dental hard tissues increasing their susceptibility to demineralization within the presence of xerostomia, microbial changes following RT and changes to a more cariogenic diet. IMRT and salivary gland sparing techniques are associated with dose-dependent recovery of salivary function over time, 2-9 and with reduced risk for dental caries long term for some patients.^{7,10} Radiation-related caries and other dental hard tissue changes can appear within the first 3 months following RT. 11,12

Goals of Pre-RT Dental/Oral evaluation:

- 1. Patient education, both oral and written, regarding oral and dental complications of RT and need for compliance with preventive protocols. 13-16
- Effect on salivary glands
- > Dry mouth strategies
 - Increased hydration
 - Salivary substitutes- eg, calcium phosphate containing solutions,¹⁷ gels containing lysozyme. lactoferrin and peroxidase¹⁸⁻¹⁹
 - Alcohol-free mouthwash

National

Cancer

- Salivary stimulation
 - Gustatory stimulants eg. xylitol chewing gum, sorbitol/malic acid lozenges or xylitol lozenges
 - Cholinergic agonists- pilocarpine, cevimeline 20-23
- > Dental caries prevention
 - Diet counseling
 - High potency topical fluoride continue long term after therapy ^{13,15,24-27}
 - Daily 1.1% NaF gel or SNF, gel, brush on or in custom dental travs or
 - Daily 1.1% NaF dentifrice or
 - Fluoride varnish application, three times per year¹⁴
 - Calcium phosphate artificial saliva rinse ¹⁷
 - Regular frequent dental evaluations to detect dental disease
- Effect on bone in irradiated field
- ▶ Need for pre-RT dental evaluation and determine need for dental extractions 7,10,12,24,28-34
 - If yes, should be completed at least 2 weeks prior to start of RT
 - Long term prognosis of teeth and patient motivation should be considered
 - Need to contact oncology team if any future extractions or surgery in irradiated field
- Effect on masticatory muscles- potential for trismus 11,12,35-38
- ➤ Maintain range of motion
 - Tongue blades and gentle stretching
 - Custom mouth opening devices for rehabilitation of trismus and jaw motion

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

PRINCIPLES OF DENTAL EVALUATION AND MANAGEMENT

Goals of Pre-RT Dental/Oral Evaluation--(continued):

- 2. Examination and assessment of patient with treatment plan 11,26,34,39
- Complete oral and head and neck examination, including radiographs of all teeth
- Risk assessment for caries and periodontal disease
- ➤ Existing periodontal and dental conditions
- ➤ Radiographic evidence of periapical pathology
- Oral hygiene
- ➤ Past dental history
- > Patient motivation and compliance
- Treatment plan
- ► Eliminate potential sources of infection.
- > Extractions at least 2 weeks before start of RT
- > Treat active dental caries, periodontal disease
- > Silicone guards to minimize radiation backscatter, if patients have metal restorations
- > Prescribe potent topical fluoride for daily use. Duration of use to be determined by periodic caries risk assessment over time
- > Return visit for re-evaluation and reinforcement of preventive protocol, during last week of RT
- > Evaluate for oral candidiasis and treat appropriately with antifungal agents

Goals of Dental Management During Cancer Therapy:

- 1. Manage xerostomia
- 2. Prevent trismus of masticatory muscles.
- 3. Evaluate for oral candidiasis and treat as clinically indicated.

Goals of Dental Management Post-treatment:

- 1. Manage xerostomia
- 2. Prevent and minimize trismus
- 3. Prevent and treat dental caries
- 4. Prevent post-radiation osteonecrosis
- 5. Prevent and manage oral candidiasis

Dental recall visit interval based on risk,⁷ at least once every 6 months, or more frequently for those with xerostomia, or those with new caries lesions following radiotherapy.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Comprehensive NCCN Guidelines Version 2.2014 **Head and Neck Cancers**

NCCN Guidelines Index Head and Neck Table of Contents Discussion

PRINCIPLES OF DENTAL EVALUATION AND MANAGEMENT (References)

- Dose on Dentition Breakdown in Head and Neck Cancer Patients. Pract Radiat Oncol 2011: 1:142-148.
- ²Eisbruch A. Ten Haken RK. Kim HM. Marsh LH. Ship JA. Dose, volume, and modulated irradiation of head and neck cancer. Int J Radiat Oncol Biol Phys 1999: 45:577-587.
- ³Murdoch-Kinch CA, Kim HM, Vineberg KA, Ship JA, Eisbruch A. Dose-effect relationships for the submandibular salivary glands and implications for their sparing by intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 2008; 72:373-382.
- ⁴Little M, Schipper M, Feng FYet al. Reducing xerostomia after chemo-IMRT for head-and-neck cancer: beyond sparing the parotid glands. Int J Radiat Oncol Biol 1814. Phys 2012; 83:1007-1014.
- ⁵Henson BS, Eisbruch A, D'Hondt E, Ship JA. Two-year longitudinal study of parotid salivary flow rates in head and neck cancer patients receiving unilateral neck parotid-sparing radiotherapy treatment. Oral Oncol 1999; 35:234-241.
- ⁶Chao KS. Protection of salivary function by intensity-modulated radiation therapy in patients with head and neck cancer. Semin Radiat Oncol 2002; 12:20-25.
- ⁷Duarte VM, Liu YF, Rafizadeh S, Tajima T, Nabili V, Wang MB. Comparison of Dental Health of Patients with Head and Neck Cancer Receiving IMRT vs Conventional Radiation. Otolaryngol Head Neck Surg 2013.
- ⁸Jensen SB. Pedersen AM. Vissink Aet al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: prevalence, severity and impact on quality of life. Support Care Cancer 2010; 18:1039-1060.
- ⁹Hunter KU, Schipper M, Feng FYet al. Toxicities affecting quality of life after chemo-IMRT of oropharyngeal cancer: prospective study of patient-reported, observer-rated, and objective outcomes. Int J Radiat Oncol Biol Phys 2013; 85:935-940.
- ¹⁰ Studer G, Glanzmann C, Studer SPet al. Risk-adapted dental care prior to intensity-modulated radiotherapy (IMRT). Schweiz Monatsschr Zahnmed 2011; 121:216-229.
- ¹¹Murdoch-Kinch CA, Zwetchkenbaum S. Dental management of the head and neck cancer patient treated with radiation therapy. J Mich Dent Assoc 2011; 93:28-37.
- ¹²Epstein JB, Thariat J, Bensadoun RJet al. Oral complications of cancer and cancer therapy: from cancer treatment to survivorship. CA Cancer J Clin 2012; 62:400-422.

- ¹Walker MP, Wichman B, Cheng AL, Coster J, Williams KB. Impact of Radiotherapy¹³Epstein JB, van der Meij EH, Lunn R, Stevenson-Moore P. Effects of compliance with fluoride gel application on caries and caries risk in patients after radiation therapy for head and neck cancer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996; 82:268-275.
- function relationships in parotid salivary glands following conformal and intensity- ¹⁴Dholam KP, Somani PP, Prabhu SD, Ambre SR, Effectiveness of fluoride varnish application as cariostatic and desensitizing agent in irradiated head and neck cancer patients. Int J Dent 2013: 2013:824982.
 - ¹⁵Horiot JC, Schraub S, Bone MCet al. Dental preservation in patients irradiated for head and neck tumours: A 10-year experience with topical fluoride and a randomized trial between two fluoridation methods. Radiother Oncol 1983; 1:77-82.
 - ¹⁶Thariat J, Ramus L, Darcourt Vet al. Compliance with fluoride custom trays in irradiated head and neck cancer patients. Support Care Cancer 2012; 20:1811-
 - ¹⁷Singh ML, Papas AS. Long-term clinical observation of dental caries in salivary hypofunction patients using a supersaturated calcium-phosphate remineralizing rinse. J Clin Dent 2009; 20:87-92.
 - ¹⁸Rhodus NL. Bereuter J. Clinical evaluation of a commercially available oral moisturizer in relieving signs and symptoms of xerostomia in postirradiation head and neck cancer patients and patients with Sjogren's syndrome. J Otolaryngol 2000; 29:28-34.
 - ¹⁹Epstein JB, Emerton S, Le ND, Stevenson-Moore P. A double-blind crossover trial of Oral Balance gel and Biotene toothpaste versus placebo in patients with xerostomia following radiation therapy. Oral Oncol 1999; 35:132-137.
 - ²⁰Epstein JB, Schubert MM. Synergistic effect of sialagogues in management of xerostomia after radiation therapy. Oral Surg Oral Med Oral Pathol 1987; 64:179-182.
 - ²¹Gorsky M. Epstein JB. Parry J. Epstein MS. Le ND. Silverman S. Jr. The efficacy of pilocarpine and bethanechol upon saliva production in cancer patients with hyposalivation following radiation therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004: 97:190-195.
 - ²²Johnson JT, Ferretti GA, Nethery WJet al. Oral pilocarpine for post-irradiation xerostomia in patients with head and neck cancer. N Engl J Med 1993; 329:390-395.
 - ²³Jensen SB, Pedersen AM, Vissink Aet al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: management strategies and economic impact. Support Care Cancer 2010; 18:1061-1079.

Continued on next page

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Comprehensive NCCN Guidelines Version 2.2014 Cancer Network® Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

PRINCIPLES OF DENTAL EVALUATION AND MANAGEMENT (References)

- ²⁴Ben-David MA, Diamante M, Radawski JDet al. Lack of osteoradionecrosis of the mandible after intensity-modulated radiotherapy for head and neck cancer: likely contributions of both dental care and improved dose distributions. Int J Radiat Oncol Biol Phys 2007; 68:396-402.
- ²⁵Fleming TJ. Use of topical fluoride by patients receiving cancer therapy. Curr Probl Cancer 1983; 7:37-41.
- ²⁶Horiot JC, Bone MC, Ibrahim E, Castro JR. Systematic dental management in head and neck irradiation. Int J Radiat Oncol Biol Phys 1981; 7:1025-1029.
- ²⁷ Joyston-Bechal S, Hayes K, Davenport ES, Hardie JM. Caries incidence, mutans streptococci and lactobacilli in irradiated patients during a 12-month preventive programme using chlorhexidine and fluoride. Caries Res 1992; 26:384-390.
- ²⁸Sulaiman F, Huryn JM, Zlotolow IM. Dental extractions in the irradiated head and neck patient: a retrospective analysis of Memorial Sloan-Kettering Cancer Center protocols, criteria, and end results. J Oral Maxillofac Surg 2003; 61:1123-1131.
- ²⁹Beumer J, 3rd, Harrison R, Sanders B, Kurrasch M. Postradiation dental extractions: a review of the literature and a report of 72 episodes. Head Neck Surg 1983; 6:581-586.
- ³⁰Chang DT, Sandow PR, Morris CGet al. Do pre-irradiation dental extractions reduce the risk of osteoradionecrosis of the mandible? Head Neck 2007; 29:528-536.
- ³¹Gomez DR, Estilo CL, Wolden SLet al. Correlation of osteoradionecrosis and dental events with dosimetric parameters in intensity-modulated radiation therapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2011; 81:e207-213.
- ³²Galler C, Epstein JB, Guze KA, Buckles D, Stevenson-Moore P. The development of osteoradionecrosis from sites of periodontal disease activity: report of 3 cases. J Periodontol 1992; 63:310-316.
- ³³Lee IJ, Koom WS, Lee CGet al. Risk factors and dose-effect relationship for mandibular osteoradionecrosis in oral and oropharyngeal cancer patients. Int J Radiat Oncol Biol Phys 2009; 75:1084-1091.
- ³⁴Schiodt M, Hermund NU. Management of oral disease prior to radiation therapy. Support Care Cancer 2002; 10:40-43.
- ³⁵Bensadoun RJ, Riesenbeck D, Lockhart PB, Elting LS, Spijkervet FK, Brennan MT. A systematic review of trismus induced by cancer therapies in head and neck cancer patients. Support Care Cancer 2010; 18:1033-1038.
- ³⁶Shulman DH, Shipman B, Willis FB. Treating trismus with dynamic splinting: a case report. J Oral Sci 2009; 51:141-144.
- ³⁷Teguh DN, Levendag PC, Voet Pet al. Trismus in patients with oropharyngeal cancer: relationship with dose in structures of mastication apparatus. Head Neck 2008; 30:622-630.
- ³⁸Brunello DL, Mandikos MN. The use of a dynamic opening device in the treatment of radiation induced trismus. Aust Prosthodont J 1995; 9:45-48.
- ³⁹Beumer J, 3rd, Harrison R, Sanders B, Kurrasch M. Preradiation dental extractions and the incidence of bone necrosis. Head Neck Surg 1983; 5:514-521.

Note: All recommendations are category 2A unless otherwise indicated.

Comprehensive NCCN Guidelines Version 2.2014 Staging **Head and Neck Cancers**

NCCN Guidelines Index Head and Neck Table of Contents Discussion

Table 1

American Joint Committee on Cancer (AJCC)

TNM Staging Classification for the Lip and Oral Cavity

(7th ed., 2010)

(Nonepithelial tumors such as those of lymphoid tissue, soft tissue, bone, and cartilage are not included)

Primary Tumor (T)

TX Primary tumor cannot be assessed No evidence of primary tumor T0

Tis Carcinoma in situ

T1 Tumor 2 cm or less in greatest dimension

T2 Tumor more than 2 cm but not more than 4 cm in greatest

dimension

Tumor more than 4 cm in greatest dimension **T3**

Moderately advanced local disease* T4a

(lip) Tumor invades through cortical bone, inferior alveolar nerve, floor of mouth, or skin of face, that is, chin or nose (oral cavity) Tumor invades adjacent structures (eq. through cortical bone [mandible or maxilla] into deep [extrinsic] muscle of tongue [genioglossus, hyoglossus, palatoglossus, and styloglossus], maxillary sinus, skin of face)

Very advanced local disease T4b

Tumor invades masticator space, pterygoid plates, or skull

base and/or encases internal carotid artery

*Note: Superficial erosion alone of bone/tooth socket by gingival primary is not sufficient to classify a tumor as T4.

Regional Lymph Nodes (N)

Regional lymph nodes cannot be assessed NX

No regional lymph node metastasis N₀

N1 Metastasis in a single ipsilateral lymph node, 3 cm or

less in greatest dimension

Metastasis in a single ipsilateral lymph node, more than N2 3 cm but not more than 6 cm in greatest dimension; or in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension; or in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension

Metastasis in single ipsilateral lymph node more than 3 N2a cm but not more than 6 cm in greatest dimension

Metastasis in multiple ipsilateral lymph nodes, none N2b more than 6 cm in greatest dimension

N2c Metastasis in bilateral or contralateral lymph nodes,

none more than 6 cm in greatest dimension

Metastasis in a lymph node more than 6 cm in greatest **N3**

dimension

Distant Metastasis (M)

M0 No distant metastasis М1 Distant metastasis

Histologic Grade (G)

GX Grade cannot be assessed

G1 Well differentiated

G2 Moderately differentiated

G3 Poorly differentiated

G4 Undifferentiated

Continued...

Comprehensive NCCN Guidelines Version 2.2014 Staging Cancer Network® Head and Neck Cancers

Table 1 - Continued

American Joint Committee on Cancer (AJCC)
TNM Staging Classification for the Lip and Oral Cavity

(7th ed., 2010)

(Nonepithelial tumors such as those of lymphoid tissue, soft tissue, bone, and cartilage are not included)

Anatomic Sta	age/Prog	nostic G	roups
Stage 0	Tis	N0	M0
Stage I	T1	N0	M0
Stage II	T2	N0	M0
Stage III	Т3	N0	M0
	T1	N1	M0
	T2	N1	M0
	Т3	N1	M0
Stage IVA	T4a	N0	M0
	T4a	N1	M0
	T1	N2	M0
	T2	N2	M0
	Т3	N2	M0
	T4a	N2	M0
Stage IVB	Any T	N3	M0
	T4b	Any N	M0
Stage IVC	Any T	Any N	M1

Comprehensive NCCN Guidelines Version 2.2014 Staging **Head and Neck Cancers**

NCCN Guidelines Index Head and Neck Table of Contents Discussion

Table 2:
American Joint Committee on Cancer (AJCC)
TNM Staging System for the Pharynx (7th ed., 2010)
(Nonepithelial tumors such as those of lymphoid tissue, soft tissue,
bone, and cartilage are not included)
Primary Tumor (T)

Nasopharynx

TX

T₀

Tis

T1	Tumor confined to the nasopharynx, or tumor extends to
	oropharynx and/or nasal cavity without parapharyngeal
	extension*

Tumor with parapharyngeal extension* **T2**

Primary tumor cannot be assessed

No evidence of primary tumor

Carcinoma in situ

Tumor involves bony structures of skull base and/or **T3** paranasal sinuses

Tumor with intracranial extension and/or involvement of **T4** cranial nerves, hypopharynx, orbit, or with extension to the infratemporal fossa/masticator space

Oropharynx

T1 Tumor 2 cm or less in greatest dimension

T2 Tumor more than 2 cm but not more than 4 cm in greatest

Tumor more than 4 cm in greatest dimension or extension **T3** to lingual surface of epiglottis

Moderately advanced local disease T4a

Tumor invades the larynx, extrinsic muscle of tongue. medial pterygoid, hard palate, or mandible*

Very advanced local disease T₄b

Tumor invades lateral pterygoid muscle, pterygoid plates, lateral nasopharynx, or skull base or encases carotid artery

*Note: Mucosal extension to lingual surface of epiglottis from primary tumors of the base of the tongue and vallecula does not constitute invasion of larynx.

Hypopharynx

T1 Tumor limited to one subsite of hypopharynx and/or 2 cm or less in greatest dimension

T2 Tumor invades more than one subsite of hypopharynx or an adjacent site, or measures more than 2 cm but not more than 4 cm in greatest diameter without fixation of hemilarynx

Tumor more than 4 cm in greatest dimension or with **T3** fixation of hemilarynx or extension to esophagus

T₄a Moderately advanced local disease Tumor invades thyroid/cricoid cartilage, hyoid bone, thyroid gland, or central compartment soft tissue**

Very advanced local disease T₄b Tumor invades prevertebral fascia, encases carotid artery, or involves mediastinal structures

Continued...

^{*}Note: Parapharyngeal extension denotes posterolateral infiltration of tumor.

^{**}Note: Central compartment soft tissue includes prelaryngeal strap muscles and subcutaneous fat.

Comprehensive NCCN Guidelines Version 2.2014 Staging Cancer Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

Table 2 - Continued

American Joint Committee on Cancer (AJCC)

TNM Staging System for the Pharynx (7th ed., 2010)

(Nonepithelial tumors such as those of lymphoid tissue, soft tissue, bone, and cartilage are not included)

Regional Lymph Nodes (N):

Nasopharynx

The distribution and the prognostic impact of regional lymph node spread from nasopharynx cancer, particularly of the undifferentiated type, are different from those of other head and neck mucosal cancers and justify the use of a different N classification system.

NX	Regional lymph nodes cannot be assessed
----	---

No No regional lymph node metastasis

N1 Unilateral metastasis in cervical lymph node(s), 6 cm or

less in greatest dimension, above the supraclavicular fossa, and/or unilateral or bilateral, retropharyngeal lymph nodes, 6 cm or less, in greatest dimension*

N2 Bilateral metastasis in cervical lymph node(s), 6 cm or less in greatest dimension, above the supraclavicular

fossa*

N3 Metastasis in a lymph node(s)* > 6 cm and/or to

supraclavicular fossa

N3a More than 6 cm in dimension

N3b Extension to the supraclavicular fossa**

Regional Lymph Nodes (N)[†]: Oropharynx and Hypopharynx

NX Regional lymph nodes cannot be assessed

No regional lymph node metastasis

N1 Metastasis in a single ipsilateral lymph node, 3 cm or less

in greatest dimension

Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 cm in greatest dimension, or in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension, or in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension

N2a Metastasis in a single ipsilateral lymph node more than 3 cm but not more than 6 cm in greatest dimension

Metastasis in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension

N2c Metastasis in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension

N3 Metastasis in a lymph node more than 6 cm in greatest dimension

[†]Note: Metastases at level VII are considered regional lymph node metastases.

Distant Metastasis (M)

M0 No distant metastasisM1 Distant metastasis

Continued...

^{*}Note: Midline nodes are considered ipsilateral nodes.

^{**}Supraclavicular zone or fossa is relevant to the staging of nasopharyngeal carcinoma and is the triangular region originally described by Ho. It is defined by three points: (1) the superior margin of the sternal end of the clavicle; (2) the superior margin of the lateral end of the clavicle; and (3) the point where the neck meets the shoulder. Note that this would include caudal portions of levels IV and VB. All cases with lymph nodes (whole or part) in the fossa are considered N3b.

Comprehensive NCCN Guidelines Version 2.2014 Staging Cancer Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

Anatomic Stage/Prognostic Groups: Oronbaryny Hyponharyny

Table 2 - Continued

American Joint Committee on Cancer (AJCC)

TNM Staging System for the Pharynx (7th ed., 2010)

Anatomic Stage/Prognostic Groups: Nasopharyny

(Nonepithelial tumors such as those of lymphoid tissue, soft tissue, bone, and cartilage are not included)

Anatomic 3	Stage/Pi	rognost	iic Groups: Nasopnarynx	Anatomic 5	tage/Prog	gnostic G	roups: Oropnarynx, Hypopnarynx
Stage 0	Tis	N0	M0	Stage 0	Tis	N0	M0
Stage I	T1	N0	MO	Stage I	T1	N0	M0
Stage II	T1	N1	MO	Stage II	T2	N0	M0
	T2	N0	M0	Stage III	Т3	N0	M0
	T2	N1	MO		T1	N1	M0
Stage III	T1	N2	MO		T2	N1	M0
	T2	N2	M0		Т3	N1	M0
	Т3	N0	MO	Stage IVA	T4a	N0	M0
	Т3	N1	MO		T4a	N1	M0
	Т3	N2	MO		T1	N2	M0
Stage IVA	T4	N0	MO		T2	N2	M0
	T4	N1	M0		Т3	N2	M0
	T4	N2	MO		T4a	N2	M0
Stage IVB	Any T	N3	MO	Stage IVB	T4b	Any N	M0
Stage IVC	Any T	Any N	M1		Any T	N3	M0
				Stage IVC	Any T	Any N	M1

Histologic Grade (G)

- **GX** Grade cannot be assessed
- **G1** Well differentiated
- **G2** Moderately differentiated
- G3 Poorly differentiated
- **G4** Undifferentiated

Table 3

Comprehensive NCCN Guidelines Version 2.2014 Staging Cancer Network® Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

1	an Joint Committee on Cancer (AJCC) TNM Staging System for ithelial tumors such as those of lymphoid tissue, soft tissue, bone, a		
Primar	y Tumor (T)	Glottis	
TX T0 Tis	Primary tumor cannot be assessed No evidence of primary tumor Carcinoma in situ		Tumor limited to the vocal cord(s) (may involve anterior or posterior commissure) with normal mobility Tumor limited to one vocal cord Tumor involves both vocal cords
Suprag	lottis	T2	Tumor extends to supraglottis and/or subglottis, and/or with
T1	Tumor limited to one subsite of supraglottis with normal vocal cord mobility	Т3	impaired vocal cord mobility Tumor limited to the larynx with vocal cord fixation and/or invasion of paraglottic space, and/or inner cortex of the
T2	Tumor invades mucosa of more than one adjacent subsite of supraglottis or glottis or region outside the supraglottis (eg, mucosa of base of tongue, vallecula, medial wall of pyriform sinus) without fixation of the larynx	T4a	thyroid cartilage Moderately advanced local disease Tumor invades through the outer cortex of the thyroid
T3	Tumor limited to larynx with vocal cord fixation and/or invades any of the following: postcricoid area, pre-epiglottic space, paraglottic space, and/or inner cortex of thyroid cartilage Moderately advanced local disease Tumor invades through the thyroid cartilage and/or invades	T4b	cartilage and/or invades tissues beyond the larynx (eg, trachea, soft tissues of neck including deep extrinsic muscle of the tongue, strap muscles, thyroid, or esophagus) Very advanced local disease Tumor invades prevertebral space, encases carotid artery, or invades mediastinal structures
	tissues beyond the larynx (eg, trachea, soft tissues of neck	Subglo	ttis
	including deep extrinsic muscle of the tongue, strap	T1	Tumor limited to the subglottis
T4b	muscles, thyroid, or esophagus) Very advanced local disease	T2	Tumor extends to vocal cord(s) with normal or impaired mobility
	Tumor invades prevertebral space, encases carotid artery, or invades mediastinal structures	T3 T4a	Tumor limited to larynx with vocal cord fixation Moderately advanced local disease Tumor invades cricoid or thyroid cartilage and/or invades tissues beyond the larynx (eg, trachea, soft tissues of neck including deep extrinsic muscles of the tongue, strap
		T4b	muscles, thyroid, or esophagus) Very advanced local disease
Continu	ed on next page	140	Tumor invades prevertebral space, encases carotid artery, or invades mediastinal structures

Distant metastasis

Comprehensive NCCN Guidelines Version 2.2014 Staging Cancer Network® Head and Neck Cancers

Table 3 - continued

American Joint Committee on Cancer (AJCC)

TNM Staging System for the Larynx (7th ed., 2010)

(Nonepithelial tumors such as those of lymphoid tissue, soft tissue, bone, and cartilage are not included)

Region	nal Lymph Nodes (N)*	Anatomic St	age/Prog	nostic Gr	oups
NX	Regional lymph nodes cannot be assessed N0; no regional lymph node metastasis	Stage 0	Tis	N0	MO
N1 N2	Metastasis in a single ipsilateral lymph node, 3 cm or less in greatest dimension Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 cm in greatest dimension; or	Stage I Stage II Stage III	T1 T2 T3 T1	N0 N0 N0 N1	M0 M0 M0 M0
	in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension; or in bilateral or contralateral lymph nodes, none more than 6 cm in greatest	Stage IVA	T2 T3 T4a	N1 N1 N0	M0 M0 M0
N2a	dimension Metastasis in a single ipsilateral lymph node, more than	Stage IVA	T4a T4a T1	N1 N2	M0 M0
N2b	3 cm but not more than 6 cm in greatest dimension Metastasis in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension		T2 T3	N2 N2	M0 M0
	Metastasis in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension	Stage IVB	T4a T4b Any T	N2 Any N N3	M0 M0 M0
N3	Metastasis in a lymph node, more than 6 cm in greatest dimension	Stage IVC	Any T	Any N	M1
metastas Distant M0 No	letastases at level VII are considered regional lymph node ses. t Metastasis (M) o distant metastasis	Histologic C GX Grade ca G1 Well diffe G2 Moderat G3 Poorly d	annot be e erentiated ely differe	assessed d entiated	

Used with the permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original and primary source for this information is the AJCC Cancer Staging Manual, Seventh Edition (2010) published by Springer Science+Business Media, LLC (SBM). (For complete information and data supporting the staging tables, visit www.springer.com.) Any citation or quotation of this material must be credited to the AJCC as its primary source. The inclusion of this information herein does not authorize any reuse or further distribution without the expressed, written permission of Springer SBM, on behalf of the AJCC.

G4 Undifferentiated

Comprehensive NCCN Guidelines Version 2.2014 Staging Cancer Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

Table 4		то.	Turner and the investor the property of the
Table 4		Т3	Tumor extends to invade the medial wall or floor of the
1	n Joint Committee on Cancer (AJCC)		orbit, maxillary sinus, palate, or cribriform plate
TNM Sta	ging System for the Nasal Cavity and Paranasal Sinuses	T4a	Moderately advanced local disease
(7th ed.,	2010)		Tumor invades any of the following: anterior orbital
1 '	helial tumors such as those of lymphoid tissue, soft tissue, bone,		contents, skin of nose or cheek, minimal extension to
1 , .	lage are not included)		anterior cranial fossa, pterygoid plates, sphenoid or
1	Tumor (T)		frontal sinuses
		T4b	Very advanced local disease
TX	Primary tumor cannot be assessed		Tumor invades any of the following: orbital apex, dura,
T0	No evidence of primary tumor		brain, middle cranial fossa, cranial nerves other than
Tis	Carcinoma in situ		(V ₂), nasopharynx, or clivus
			(\(\frac{2}{2}\), hadoopharynx, or onvao
Maxillar		Regiona	I Lymph Nodes (N)
T1	Tumor limited to maxillary sinus mucosa with no erosion or	NX	Regional lymph nodes cannot be assessed
	destruction of bone	NO	No regional lymph node metastasis
T2	Tumor causing bone erosion or destruction including	N1	Metastasis in a single ipsilateral lymph node, 3 cm or less
	extension into the hard palate and/or middle nasal meatus,	14 1	in greatest dimension
	except extension to posterior wall of maxillary sinus and	N2	
	pterygoid plates	NZ	Metastasis in a single ipsilateral lymph node, more than
T3	Tumor invades any of the following: bone of the posterior		3 cm but not more than 6 cm in greatest dimension; or in
	wall of maxillary sinus, subcutaneous tissues, floor or		multiple ipsilateral lymph nodes, none more than 6 cm in
	medial wall of orbit, pterygoid fossa, ethmoid sinuses		greatest dimension; or in bilateral or contralateral lymph
T4a	Moderately advanced local disease		nodes, none more than 6 cm in greatest dimension
174	Tumor invades anterior orbital contents, skin of cheek,	N2a	Metastasis in a single ipsilateral lymph node, more than
	pterygoid plates, infratemporal fossa, cribriform plate,		3 cm but not more than 6 cm in greatest dimension
	· · · · · · · · · · · · · · · · · · · ·	N2b	Metastasis in multiple ipsilateral lymph nodes, none more
T41.	sphenoid or frontal sinuses		than 6 cm in greatest dimension
T4b	Very advanced local disease	N2c	Metastasis in bilateral or contralateral lymph nodes, none
	Tumor invades any of the following: orbital apex, dura,		more than 6 cm in greatest dimension
	brain, middle cranial fossa, cranial nerves other than	N3	Metastasis in a lymph node, more than 6 cm in greatest
	maxillary division of trigeminal nerve (V ₂), nasopharynx, or		dimension
	clivus		difficition
		Distant I	Motostosis (M)
	avity and Ethmoid Sinus		Metastasis (M)
T1	Tumor restricted to any one subsite, with or without bony	M0	No distant metastasis
	invasion	M1	Distant metastasis
T2	Tumor invading two subsites in a single region or extending		
	to involve an adjacent region within the nasoethmoidal		<u>Continued on next page</u>
I	is an experience and a second control of the contro		

Used with the permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original and primary source for this information is the AJCC Cancer Staging Manual, Seventh Edition (2010) published by Springer Science+Business Media, LLC (SBM). (For complete information and data supporting the staging tables, visit www.springer.com.) Any citation or quotation of this material must be credited to the AJCC as its primary source. The inclusion of this information herein does not authorize any reuse or further distribution without the expressed, written permission of Springer SBM, on behalf of the AJCC.

complex, with or without bony invasion

Comprehensive NCCN Guidelines Version 2.2014 Staging Cancer Network® Head and Neck Cancers

Table 4 - Continued

American Joint Committee on Cancer (AJCC)

TNM Staging System for the Nasal Cavity and Paranasal Sinuses (7th ed., 2010)

(Nonepithelial tumors such as those of lymphoid tissue, soft tissue, bone, and cartilage are not included)

Anatomic Stage/Prognostic Groups				
Stage 0	Tis	N0	MO	
Stage I	T1	N0	M0	
Stage II	T2	N0	MO	
Stage III	Т3	N0	MO	
	T1	N1	MO	
	T2	N1	MO	
	Т3	N1	MO	
Stage IVA	T4a	N0	MO	
	T4a	N1	MO	
	T1	N2	MO	
	T2	N2	MO	
	Т3	N2	MO	
	T4a	N2	MO	
Stage IVB	T4b	Any N	MO	
-	Any T	N3	M0	
Stage IVC	Any T	Any N	M1	

Histologic Grade (G)

- **GX** Grade cannot be assessed
- **G1** Well differentiated
- **G2** Moderately differentiated
- G3 Poorly differentiated
- **G4** Undifferentiated

Comprehensive NCCN Guidelines Version 2.2014 Staging Cancer Head and Neck Cancers

NCCN Guidelines Index Head and Neck Table of Contents Discussion

ומ	

American Joint Committee on Cancer (AJCC)

TNM Staging System for the Major Salivary Glands (7th ed., 2010) (Parotid, Submandibular, and Sublingual)

Primary Tumor (T)

TX Primary	tumor	cannot	be	assessed
-------------------	-------	--------	----	----------

T0 No evidence of primary tumor

T1 Tumor 2 cm or less in greatest dimension without

extraparenchymal extension*

Tumor more than 2 cm but not more than 4 cm in greatest

dimension without extraparenchymal extension*

Tumor more than 4 cm and/or tumor having

extraparenchymal extension*

T4a Moderately advanced disease

Tumor invades skin, mandible, ear canal, and/or facial

nerve

T4b Very advanced disease

Tumor invades skull base and/or pterygoid plates and/or

encases carotid artery

Regional Lymph Nodes (N)

No No regional lymph node metastasis

N1 Metastasis in a single ipsilateral lymph node, 3 cm or less

in greatest dimension

N2 Metastasis in a single ipsilateral lymph node, more than 3

cm but not more than 6 cm in greatest dimension; or in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension; or in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension **N2a** Metastasis in a single ipsilateral lymph node, more than 3 cm but not more than 6 cm in greatest dimension

N2b Metastasis in multiple ipsilateral lymph nodes, none more than 6 cm in greatest dimension

N2c Metastasis in bilateral or contralateral lymph nodes, none more than 6 cm in greatest dimension

N3 Metastasis in a lymph node, more than 6 cm in greatest dimension

Distant Metastasis (M)

M0 No distant metastasis

M1 Distant metastasis

Anatomic Stage/Prognostic Groups

Stage I	T1	N0	M0
Stage II	T2	N0	M0
Stage III	Т3	N0	M0
	T1	N1	M0
	T2	N1	M0
	Т3	N1	M0
Stage IVA	T4a	N0	M0
_	T4a	N1	M0
	T1	N2	M0
	T2	N2	M0
	Т3	N2	M0
	T4a	N2	M0
Stage IVB	T4b	Any N	M0
	Any T	N3	M0
Stage IVC	Any T	Any N	M1

^{*}Note: Extraparenchymal extension is clinical or macroscopic evidence of invasion of soft tissues. Microscopic evidence alone does not constitute extraparenchymal extension for classification purposes.

Comprehensive NCCN Guidelines Version 2.2014 Staging Cancer Network® Head and Neck Cancers

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

Table 6

American Joint Committee on Cancer (AJCC)
TNM Staging System for Mucosal Melanoma of the Head and Neck
(7th ed., 2010)

Primary Tumor (T)

T3 Mucosal disease

T4a Moderately advanced disease

Tumor involving deep soft tissue, cartilage, bone, or

overlying skin

T4b Very advanced disease

Tumor involving brain, dura, skull base, lower cranial nerves (IX, X, XI, XII), masticator space, carotid artery,

prevertebral space, or mediastinal structures

Regional Lymph Nodes (N)

NX Regional lymph nodes cannot be assessed

No No regional lymph node metastases

N1 Regional lymph node metastases present

Distant Metastasis (M)

M0 No distant metastasisM1 Distant metastasis

Anatomic Stage/Prognostic Groups

Stage III	Т3	N0	M0
Stage IVA	T4a	N0	M0
	T3-T4a	N1	M0
Stage IVB	T4b	Any N	M0
Stage IVC	Any T	Any N	M1

Histologic Grade (G)

GX Grade cannot be assessed

G1 Well differentiated

G2 Moderately differentiated

G3 Poorly differentiated

G4 Undifferentiated

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

Discussion

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Table of Contents

Overview	MS-4
Incidence and Etiology	MS-4
Staging	MS-4
Management Approaches	MS-5
Multidisciplinary Team Involvement	MS-5
Comorbidity and Quality of Life	MS-6
Comorbidity	MS-6
Quality of Life	MS-6

Head and Neck Surgery	MS-6
Principles of Surgery	MS-6
Resectable Versus Unresectable Disease	MS-7
Neck Dissection	MS-7
Postoperative Management of High-Risk Disease	MS-9
Salvage Surgery	MS-9
Head and Neck Radiation Therapy	MS-10
Recent Updates	MS-10
Radiation Doses	MS-11
Fractionation in RT Alone	MS-11
Fractionation in Concurrent Chemoradiation	MS-12
Radiation Techniques and IMRT	MS-12
Brachytherapy	MS-14
Follow-up After RT	MS-14
Principles of Nutrition and Supportive Care	MS-14
Principles of Dental Evaluation and Management	MS-15
Cancer of the Lip	MS-15
Workup and Staging	MS-15
Treatment	MS-16
Treatment of the Primary	MS-16

Management of the Neck	MS-16	Treatment	MS-24
Radiation Therapy	MS-16	Follow-up/Surveillance	MS-26
Follow-up/Surveillance	MS-17	Cancer of the Larynx	MS-26
Cancer of the Oral Cavity	MS-17	Workup and Staging	MS-26
Workup and Staging	MS-17	Treatment	MS-27
Treatment	MS-17	Follow-up/Surveillance	MS-28
Follow-up/Surveillance	MS-18	Paranasal Tumors (Maxillary and Ethmoid Sinus Tumo	ors)MS-28
Cancer of the Oropharynx	MS-18	Ethmoid Sinus Tumors	MS-29
Workup and Staging	MS-18	Maxillary Sinus Tumors	MS-29
HPV Testing	MS-18	Follow-up	MS-30
Treatment	MS-19	Very Advanced Head and Neck Cancers	MS-30
The Induction Chemotherapy Controversy	MS-20	Treatment	MS-30
Radiation Therapy Fractionation	MS-22	Newly Diagnosed Advanced Disease	MS-30
Follow-up/Surveillance	MS-22	Recurrent or Persistent Disease	MS-31
Cancer of the Hypopharynx	MS-22	Metastatic Disease	MS-31
Workup and Staging	MS-22	Occult Primary Cancer	MS-32
Treatment	MS-23	Workup	MS-33
Follow-up/Surveillance	MS-24	Treatment	MS-33
Cancer of the Nasopharynx	MS-24	Salivary Gland Tumors	MS-34
Workup and Staging	MS-24	Treatment	MS-34

Follow-up	MS-35
Mucosal Melanoma of the Head and Neck	MS-35
Workup and Staging	MS-35
Treatment	MS-35
Radiation Therapy	MS-36
Systemic Therapy	MS-37
Follow-up	MS-37
Recommended Reading List	MS-37
Figure 1: Anatomic Sites and Subsites of the Head and Neck	MS-39
Figure 2: Level Designation for Cervical Lymphatics in the Right	
References	MS-40

NCCN Guidelines Index Head and Neck Table of Contents Discussion

Overview

The NCCN Guidelines for Head and Neck Cancers address tumors arising in the lip, oral cavity, pharynx, larynx, and paranasal sinuses (see Figure 1); occult primary cancer, salivary gland cancer, and mucosal melanoma are also addressed. The *Updates* section in the algorithm briefly describes the new changes for 2014, which include revisions to the *Principles of Radiology* for each site and to the *Principles of Surgery* (see the NCCN Guidelines for Head and Neck Cancers). A new section on *Principles of Dental Evaluation and Management* was added for the 2014 update (see this Discussion and the algorithm). A brief overview of the epidemiology and management of head and neck (H&N) cancers is provided in the following section. A recent review discusses the progress that has been made during the last 10 years in understanding the epidemiology, pathogenesis, and management of H&N cancers.

By definition, the NCCN Guidelines cannot incorporate all possible clinical variations and are not intended to replace good clinical judgment or individualization of treatments. Exceptions to the rule were discussed among the panel members while developing these NCCN Guidelines. A 5% rule (omitting clinical scenarios that comprise less than 5% of all cases) was used to eliminate uncommon clinical occurrences or conditions from these NCCN Guidelines.

Incidence and Etiology

In 2014, it is estimated that about 55,070 new cases of oral cavity, pharyngeal, and laryngeal cancers will occur, which account for about 3% of new cancer cases in the United States.⁴ An estimated 12,000 deaths from H&N cancers will occur during the same time period.⁴ Squamous cell carcinoma or a variant is the histologic type in more than 90% of these tumors. Alcohol and tobacco abuse are common etiologic

factors in cancers of the oral cavity, oropharynx, hypopharynx, and larynx. Because the entire aerodigestive tract epithelium may be exposed to these carcinogens, patients with H&N cancers are at risk for developing second primary neoplasms of the H&N, lung, esophagus, and other sites that share these risk factors.

Human papillomavirus (HPV) infection is now well accepted as a risk factor for the development of squamous cancers of the oropharynx (particularly cancers of the lingual and palatine tonsils, and base of the tongue). The overall incidence of HPV-positive H&N cancers is increasing in the United States, while the incidence of HPV-negative (primarily tobacco- and alcohol-related) cancer is decreasing. A strong causal relationship has been established between HPV type 16 and development of oropharyngeal cancer (see *HPV Testing* in this Discussion). It has not yet been shown whether HPV vaccination will decrease the incidence of HPV-positive oropharyngeal cancer. Cancer of the oral tongue also seems to be increasing in young white women, (+1%/year among young women); however, the etiology is unclear.

Staging

Stage at diagnosis predicts survival rates and guides management in patients with H&N cancers. The 2010 AJCC staging classification (7th edition) was used as a basis for NCCN's treatment recommendations for H&N cancers. ^{16,17} The TNM staging systems developed by the AJCC for the lip and oral cavity, pharynx (nasopharynx, oropharynx, and hypopharynx), larynx (glottis and supraglottis), paranasal sinuses (ethmoid and maxillary), major salivary glands (parotid, submandibular, and sublingual), and mucosal melanoma are shown in Tables 1 to 6, respectively. ¹⁷ Definitions for regional lymph node (N) involvement and spread to distant metastatic sites (M) are uniform except for N staging of nasopharyngeal carcinoma (see Table 2). Definitions for staging the

NCCN Guidelines Index Head and Neck Table of Contents Discussion

primary tumor (T), based on its size, are uniform for the lip, oral cavity, and oropharynx. In contrast, T stage is based on subsite involvement and is specific to each subsite for the glottic larynx, supraglottic larynx, hypopharynx, and nasopharynx. In general, stage I or II disease defines a relatively small primary tumor with no nodal involvement. Stage III or IV cancers include larger primary tumors, which may invade underlying structures and/or spread to regional nodes. Distant metastases are uncommon at presentation. More advanced TNM stages are associated with worse survival. Protocols for the specific sites from the College of American Pathologists may also be useful.

In the 7th edition of the AJCC staging manual, the words *resectable* (T4a) and unresectable (T4b) were replaced by the terms moderately advanced (T4a) and very advanced (T4b). 16 These changes were deemed necessary, because a substantial proportion of advanced-stage malignancies of the H&N, although resectable, are being treated non-surgically. Furthermore, a clear consensus in criteria for resectability can be difficult to obtain. For example, some tumors deemed unresectable are in fact anatomically resectable, but surgery is not pursued because of medical contraindications to surgery or because it is anticipated that surgery will not improve prognosis (see Resectable versus Unresectable Disease in this Discussion). This change in terminology allows revising of stage IV disease into moderately advanced local/regional disease (stage IVA), very advanced local/regional disease (stage IVB), and distant metastatic disease (stage IVC) for many sites (ie, lip, oral cavity, oropharynx, hypopharynx, larynx, paranasal sinuses, major salivary glands, mucosal melanoma). Of note, a designation of stage IV disease does not necessarily mean the disease is incurable, particularly in the absence of distant metastases. Mucosal melanomas are rare, very aggressive tumors that mainly affect the nasal cavity and paranasal sinuses. Thus, melanomas

confined to the mucosa only are T3; those with moderately advanced lesions (involving underlying cartilage or bone) are T4a, and very advanced primary tumors are T4b (see Table 6).

Management Approaches

Treatment is complex for patients with H&N cancers. The specific site of disease, stage, and pathologic findings guide treatment (ie, the appropriate surgical procedure, radiation targets, dose and fractionation, indications for chemotherapy). Single-modality treatment with surgery or radiation therapy (RT) is generally recommended for the approximately 30% to 40% of patients who present with early-stage disease (stage I or II). The 2 modalities result in similar survival in these individuals. In contrast, combined modality therapy is generally recommended for the approximately 60% of patients with locally or regionally advanced disease at diagnosis.

The treatment of patients with locally advanced T4b or unresectable nodal disease, metastatic disease, or recurrent disease for the following sites (ie, lip, oral cavity, pharynx, larynx, paranasal sinus) and for occult primary cancer is addressed in the algorithm (see the NCCN Guidelines for Very Advanced Head and Neck Cancers). Participation in clinical trials is a preferred or recommended treatment option in many situations. In formulating these NCCN Guidelines, panel members have tried to make them evidence-based while providing a statement of consensus as to the acceptable range of treatment options.

Multidisciplinary Team Involvement

The initial evaluation and development of a plan for treating the patient with H&N cancer requires a multidisciplinary team of health care providers with expertise in caring for these patients. Similarly, managing and preventing sequelae after radical surgery, RT, and chemotherapy (eg, pain, xerostomia, speech and swallowing problems, depression)

NCCN Guidelines Index Head and Neck Table of Contents Discussion

requires professionals familiar with the disease. 18,19 Follow-up for these seguelae should include a comprehensive H&N examination. Adequate nutritional support can help to prevent severe weight loss in patients receiving treatment for H&N cancers; therefore, patients should be encouraged to see a dietician (see Principles of Nutrition: Management and Supportive Care in the NCCN Guidelines for Head and Neck Cancers and this Discussion). 20 A new section on Principles of Dental Evaluation and Management was added for the 2014 update (see this Discussion and the NCCN Guidelines for Head and Neck Cancers). Patients should also be encouraged to stop smoking (and remain abstinent) and to modify alcohol consumption if excessive, because these habits may decrease the efficacy of treatment and adversely affect other health outcomes.^{21,22} Programs using behavioral counseling combined with medications that promote smoking cessation (approved by the FDA) can be very useful (www.smokefree.gov/). Patients are at risk for depression from H&N cancer and its seguela, so screening for depression is advised (see the NCCN Guidelines for Distress Management). 23-26 Specific components of patient support and follow-up are listed in the algorithm (see Team Approach in the NCCN Guidelines for Head and Neck Cancers). Panel members also recommend referring to the NCCN Guidelines for Palliative Care, Distress Management, and Adult Cancer Pain as needed.

Comorbidity and Quality of Life

Comorbidity

Comorbidity refers to the presence of concomitant disease (in addition to H&N cancers) that may affect diagnosis, treatment, and prognosis. ²⁷⁻²⁹ Documentation of comorbidity is important to facilitate optimal treatment selection. Comorbidity is known to be a strong independent predictor for mortality in patients with H&N cancers, ²⁹⁻³⁶ and comorbidity also influences costs of care, utilization, and quality of

life.³⁷⁻³⁹ Traditional indices of comorbidity include the Charlson index²⁸ and the Kaplan-Feinstein index and its modifications.^{29,40} The Adult Comorbidity Evaluation-27 (ACE-27) is specific for H&N cancers and has excellent emerging reliability and validity.^{41,42}

Quality of Life

Health-related quality-of-life issues are paramount in H&N cancers. These tumors affect basic physiologic functions (ie, the ability to chew, swallow, and breathe), the senses (taste, smell, hearing), and uniquely human characteristics (ie, appearance, voice). *Health status* describes an individual's physical, emotional, and social capabilities and limitations. *Function* and *performance* refer to how well an individual is able to perform important roles, tasks, or activities. *Quality of life* differs, because the central focus is on the *value* (determined by the patient alone) that individuals place on their health status and function.⁴³

An NIH–sponsored conference⁴⁴ recommended the use of patient-completed scales to measure quality of life. For H&N cancer-specific issues, the 3 validated and accepted measures are: 1) the University of Washington Quality of Life scale (UW-QOL);⁴⁵ 2) the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC-HN35);⁴⁶ and 3) the Functional Assessment of Cancer Therapy Head and Neck module (FACT-H&N).⁴⁷ The Performance Status Scale is a clinician-rated performance scale that is widely used for patients with H&N cancers.⁴⁸

Head and Neck Surgery

Principles of Surgery

All patients should be evaluated by an H&N surgical oncologist before treatment. In addition, it is critical that multidisciplinary evaluation and treatment be well coordinated. Evaluation, integration of therapy,

NCCN Guidelines Index Head and Neck Table of Contents Discussion

assessment of resectability, primary tumor resection, margins, surgical management of cranial nerves (VII, X–XII), neck management, management of recurrences, and surveillance (including post-treatment neck evaluation) are discussed in the algorithm (see *Principles of Surgery* in the NCCN Guidelines for Head and Neck Cancers). 49,50 Resectable disease, neck dissection, postoperative management, and salvage surgery for high-risk disease are discussed in the following sections. Minimally invasive surgery may be useful for decreasing morbidity. 51,52 Use of robotic surgery is increasing in the United States. For H&N cancer surgery, transoral resection using robotic, endoscopic, or direct access surgery may offer advantages over conventional methods. 53,54 For the 2014 update, revisions to the *Principles of Surgery* section are described in the *Updates* section of the algorithm (see NCCN Guidelines for Head and Neck Cancer).

Resectable Versus Unresectable Disease

The term *unresectable* has resisted formal definition by H&N cancer specialists. The experience of the surgeon and the support available from reconstructive surgeons, physiatrists, and prosthodontists often strongly influence recommendations, especially in institutions where only a few patients with locally advanced H&N cancers are treated. The NCCN Member Institutions have teams experienced in the treatment of H&N cancers and maintain the multidisciplinary infrastructure needed for reconstruction and rehabilitation. A patient's cancer is deemed unresectable if H&N surgeons at NCCN Member Institutions do not think they can remove all gross tumor on anatomic grounds or if they are certain local control will not be achieved after surgery (even with the addition of RT to the treatment approach). Typically, these unresectable tumors densely involve the cervical vertebrae, brachial plexus, deep muscles of the neck, or carotid artery (see *Principles of Surgery* in the NCCN Guidelines for Head and Neck Cancers). Tumor involvement of

certain sites is associated with poor prognosis (ie, direct extension of neck disease to involve the external skin; direct extension to mediastinal structures, prevertebral fascia, or cervical vertebrae).

Unresectable tumors (ie, those tumors that cannot be removed without causing unacceptable morbidity) should be distinguished from inoperable tumors in those patients whose constitutional state precludes an operation (even if the cancer could be readily resected with few sequelae). Additionally, a subgroup of patients will refuse surgical management, but their tumors should also not be deemed unresectable. Although local and regional disease may be surgically treatable, patients with distant metastases are usually treated as though the primary tumor was unresectable. Thus, patient choice or a physician's expectations regarding cure and morbidity will influence or determine treatment. Patients with resectable tumors who can also be adequately treated without surgery represent a very important group. Definitive treatment with RT alone or RT combined with chemotherapy may represent equivalent or preferable approaches to surgery in these individuals. Although such patients may not undergo surgery, their tumors should not be labeled as unresectable. Their disease is usually far less extensive than those with disease that truly cannot be removed.

Neck Dissection

Historically, cervical lymph node (ie, neck) dissections have been classified as *radical* or *modified radical* procedures. The less radical procedures preserved the sternocleidomastoid muscle, jugular vein, spinal accessory nerve, or selective lymph node levels. The NCCN Panel prefers to classify cervical lymphadenectomy using contemporary nomenclature; thus, cervical lymph node dissections are classified as either *comprehensive* or *selective*. ⁵⁵ A *comprehensive* neck dissection is one that removes all lymph node groups that would be included in a

NCCN Guidelines Index Head and Neck Table of Contents Discussion

classic radical neck dissection. Whether the sternocleidomastoid muscle, jugular vein, or spinal accessory nerve is preserved does not affect whether the dissection is classified as comprehensive. Depending on the site, comprehensive neck dissection is often recommended for N3 disease (see the algorithm for specific sites and *Neck Management* in *Principles of Surgery* in the NCCN Guidelines for Head and Neck Cancers).

Selective neck dissections have been developed based on the common pathways for spread of H&N cancers to regional nodes (see Figure 2). 56,57 Depending on the site, selective neck dissection is often recommended for N0 disease (see the algorithm for specific sites and Neck Management in Principles of Surgery in the NCCN Guidelines for Head and Neck Cancers). To remove the nodes most commonly involved with metastases from the oral cavity, a selective neck dissection is recommended that includes the nodes found above the omohyoid muscle (levels I-III and sometimes the superior parts of level V). 55,58 Similarly, to remove the nodes most commonly involved with metastases from the pharynx and larynx, a selective neck dissection is recommended that includes the nodes in levels II to IV and level VI when appropriate. 55 Elective level VI dissections are often considered appropriate for infraglottic laryngeal cancers. H&N squamous cell cancer with no clinical nodal involvement rarely presents with nodal metastasis beyond the confines of an appropriate selective neck dissection (<10% of the time).⁵⁹⁻⁶¹

The chief role of selective neck dissections in these NCCN Guidelines is to determine which patients are candidates for possible adjuvant therapy (ie, chemotherapy/RT or RT), although selective neck dissections may be used as treatment when neck tumor burden is low. 62 In general, patients undergoing selective neck dissection should not have clinical nodal disease; however, selective neck dissection may

prevent morbidity in patients with nodal disease and may be appropriate in certain patients with N1 to N2 disease. ⁶³⁻⁶⁵ In the NCCN Guidelines, patients with cervical node metastases who undergo operations with therapeutic intent are generally treated with comprehensive neck dissections, because often they have disease outside the bounds of selective neck dissections. Determining whether an ipsilateral or bilateral neck dissection is needed depends on tumor thickness, the extent of the tumor, and the site of the tumor. ⁴⁹ For example, bilateral neck dissection is often recommended for tumors at or near the midline and/or for tumor sites with bilateral drainage.

Careful and regular follow-up examinations by a trained H&N surgical oncologist are recommended for nonsurgically treated patients so that any local or regional recurrence is detected early, and salvage surgery (and neck dissection as indicated) is performed. After either RT or chemoradiation, post-treatment evaluation with imaging (ie, CT and/or MRI with contrast, PET-CT) guides the use of neck dissection (see *Post Chemoradiation or RT Neck Evaluation* in the *Principles of Surgery* in the NCCN Guidelines for Head and Neck Cancers). 66-69 If PET-CT is used for follow-up, the first scan should be performed at a minimum of 12 weeks after treatment to reduce the false-positive rate. 67,70

Note that a *complete clinical response* (ie, clinically negative) may be defined as no visible or palpable neck disease and no radiographic findings (ie, the absence of either focally abnormal lymph nodes or large nodes [>1.5 cm]);^{66,71} a complete pathologic response requires pathologic confirmation. If a complete clinical response has been achieved in patients who were N0 at initial staging, all of the panel members recommend observing the patient.^{66,71,72} In patients who have a clinically negative neck, a negative PET-CT is 90% reliable and further imaging is optional.⁷³⁻⁷⁵ Panel members also concur that any patient with residual disease or suspected progression in the neck after

NCCN Guidelines Index Head and Neck Table of Contents Discussion

RT or chemoradiation should undergo a neck dissection.⁶⁶ For patients with more equivocal PET-CT scan results in the neck, a recent study suggests that a repeat PET-CT scan 4 to 6 weeks later may help identify those patients who can be safely observed without surgery to the neck.⁷⁶

Postoperative Management of High-Risk Disease

Many factors influence survival and locoregional tumor control in patients with H&N cancers. The role of chemotherapy/RT in the postoperative management of the patient with adverse prognostic risk factors has been clarified by 2 separate multicenter randomized trials for patients with high-risk cancers of the oral cavity, oropharynx, larynx, or hypopharynx; 77,78 long-term follow-up has been recently reported for one of the trials. 9 A combined analysis of data from the 2 trials has been done. 80

The US Intergroup trial (RTOG 9501) randomly assigned patients with 2 or more involved nodes, positive margins, or extracapsular nodal spread of tumor to receive standard postoperative RT or the same RT plus cisplatin (100 mg/m² every 3 weeks for 3 doses). Note that long-term results from RTOG 9501 have recently been published. The European trial (EORTC 22931) was designed using the same chemotherapy treatment and similar RT dosing but also included as high-risk factors the presence of perineural or perivascular disease and nodal involvement at levels 4 and 5 from an oral cavity or oropharyngeal cancer. The RTOG trial showed statistically significant improvement in locoregional control and disease-free survival but not overall survival, whereas the EORTC trial found significant improvement in survival and the other outcome parameters. A schedule using cisplatin at 50 mg intravenously weekly has also been shown to improve survival in this setting in a randomized trial.

To better define risk, a combined analysis of prognostic factors and outcome from the 2 trials was performed. This analysis showed that patients in both trials with extracapsular nodal spread of tumor and/or positive resection margins benefited from the addition of cisplatin to postoperative RT. For those with multiple involved regional nodes without extracapsular spread, there was no survival advantage. The NCCN Panel noted that the combined analysis was considered exploratory by the authors, because it was not part of the initial protocol design. These publications form the basis for the NCCN recommendations.

In NCCN Member Institutions, patients with extracapsular nodal spread and/or positive surgical margins receive adjuvant chemoradiotherapy after surgery. The presence of other adverse risk factors—multiple positive nodes (without extracapsular nodal spread), vascular/lymphatic/perineural invasion, pT3 or pT4 primary, and oral cavity or oropharyngeal primary cancers with positive level 4 or 5 nodes—are established indications for postoperative RT. Because patients with these other adverse features were also included in the EORTC 22931 trial that showed a survival advantage for patients receiving cisplatin concurrent with postoperative RT compared to RT alone, the NCCN Panel added *consider chemoradiation* for these features. To

Salvage Surgery

Patients with advanced carcinoma (any T, N2–3) who undergo nonsurgical treatment, such as concurrent chemotherapy and RT, need very close follow-up both to evaluate for local recurrence and to assess for ipsilateral or contralateral neck recurrence (see *Follow-up Recommendations* in the NCCN Guidelines for Head and Neck Cancers). For patients who do not have a complete clinical response to

NCCN Guidelines Index Head and Neck Table of Contents Discussion

chemotherapy/RT, salvage surgery plus neck dissection is recommended as indicated. However, all panel members emphasized that it may be difficult to detect local or regional recurrence due to radiation-related tissue changes, and this may result in a delayed diagnosis of persistent or recurrent disease.

Panel members also emphasized the increased risk of complications when salvage surgery is attempted. Some of these patients may require microvascular free flap reconstruction to cover the defects at the primary site. The patients undergoing neck dissection may develop complications related to delayed wound healing, skin necrosis, or carotid exposure. Laryngectomy may be indicated to obtain clear surgical margins or to prevent aspiration (eg, in patients with advanced oropharyngeal cancer). After salvage laryngectomy, patients may have a higher incidence of pharyngocutaneous fistula and flaps may be advantageous (either a free flap reconstruction of the laryngopharyngeal defect, or a myocutaneous flap to buttress the suture line if the pharynx can be closed primarily).

Head and Neck Radiation Therapy

RT for H&N cancers has grown increasingly complex. The availability and technical precision of intensity-modulated RT (IMRT) has markedly increased, perhaps beyond our ability to estimate the location of small subsites of microscopic disease. A thorough understanding of natural history, anatomy, clinical circumstances, and imaging continue to guide the use of radiation as primary or adjuvant treatment. The NCCN Guidelines for Radiation Therapy are not all-inclusive. Although technical guidelines are rapidly evolving and becoming more specific, advanced technologies provide much opportunity for variations and individualization in targeting and dose delivery, challenging traditional notions of *standard* fields and targets. Guidelines from the American

College of Radiology may be useful for technical details (http://www.acr.org/Quality-Safety).

Recent Updates

For the 2014 update, the NCCN Guidelines for Radiation Therapy were revised for each site, including extensive revisions for mucosal melanoma (see *Principles of Radiation Therapy* in the NCCN Guidelines for Head and Neck Cancers). In addition, for 2014, the maximum dose limits for definitive standard fractionation for areas at high risk for recurrence (ie, primary tumor and high-risk level lymph nodes) were decreased for many sites. For example, the maximum dose limits were decreased to 70 Gy (2 Gy/fraction) for the following sites: lip, oral cavity, oropharynx, hypopharynx, glottic larynx, supraglottic larynx, occult primary, salivary gland tumors, and mucosal melanoma. For sites of suspected subclinical spread (at low to intermediate risk of recurrence), the doses for intensity-modulated RT (IMRT) or 3-D conformal RT were clarified for the following sites: lip, oral cavity, oropharynx, hypopharynx, glottic larynx, supraglottic larynx, occult primary, salivary gland tumors, and mucosal melanoma.

A new section on *Palliative RT* was added in 2013 and revised for 2014 (see *Radiation Techniques* in the NCCN Guidelines for Head and Neck Cancers and see *Palliative RT* in this Discussion). For 2013, the RT sections for each site were revised to include contemporary nomenclature (eg, planning target volume) and the fractionation was revised for clarity. Instead of using the phrase *primary and gross adenopathy*, the high-risk sites are now specified as *primary tumor and involved lymph nodes*. Instead of using the phrase *uninvolved nodal stations*, the intermediate-risk and low-risk sites are now specified as *sites of suspected subclinical spread*. Minimum and maximum dose

NCCN Guidelines Index Head and Neck Table of Contents Discussion

limits are precisely defined for: 1) high-risk sites; and 2) intermediate- and low-risk sites.

Radiation Doses

Selection of radiation total dose depends on the primary tumor and neck node size, fractionation, and clinical circumstances, including whether to use concurrent chemotherapy (see *Radiation Techniques* in the NCCN Guidelines for Head and Neck Cancers and see the individual *Principles of Radiation Therapy* for each primary site). When using conventional definitive fractionation, the primary tumor and involved lymph nodes (ie, high-risk sites) generally require a total of 66 Gy (2.2 Gy/fraction) to 70 Gy (2.0 Gy/fraction). For doses greater than 70 Gy, some clinicians feel that the fractionation should be slightly modified (eg, <2.0 Gy/fraction for at least some of the treatment) to minimize toxicity; an additional 2 to 3 doses can be added depending on clinical circumstances. External-beam radiation doses exceeding 72 Gy using conventional fractionation (2.0 Gy/fraction) may lead to unacceptable rates of normal tissue injury. S8,91-95 When using hyperfractionation, high-risk sites generally require up to 81.6 Gy (1.2 Gy/fraction).

In contrast, elective irradiation to low-risk and intermediate-risk sites requires 44 Gy (2.0 Gy/fraction) to 63 Gy (1.6-1.8 Gy/fraction), depending on the estimated level of tumor burden, and on whether 3-D conformal RT or IMRT is used. For 3-D conformal RT and sequentially planned IMRT, suggest 44 to 50 Gy (2.0 Gy/fraction). For IMRT, suggest 54 to 63 Gy (1.6-1.8 Gy/fraction). Postoperative irradiation is recommended based on stage, histology, and surgical-pathologic findings. In general, postoperative RT is recommended for selected risk factors, including advanced T-stage, depth of invasion, multiple positive nodes (without extracapsular nodal spread), or perineural/lymphatic/vascular invasion. Higher doses of postoperative

RT alone (60–66 Gy), or with chemotherapy, are recommended for the high-risk features of extracapsular disease and/or positive margins. ^{79,80} The preferred interval is 6 weeks or less, between resection and commencement of postoperative RT.

Fractionation in RT Alone

No single fractionation schedule has proven to be best for all tumors. Data strongly indicate that squamous cancers of the H&N can grow rapidly and may compensate for RT-induced cell loss through the mechanism of accelerated repopulation. Especially in RT alone settings, schedules delivering at least 1000 cGy per week are recommended, with the exception of salivary gland tumors, which may have slower cell kinetics. Trials in early-stage glottic laryngeal cancer have shown higher recurrence rates with daily fraction sizes <200 cGy where the cumulative weekly dose is <1000 cGy. 108,109

Two large, randomized trials from Europe have reported improved locoregional control using altered fractionation. The EORTC protocol 22791 compared hyperfractionation (1.15 Gy twice daily, or 80.5 Gy over 7 weeks) with conventional fractionation (2 Gy once daily, or 70 Gy over 7 weeks) in the treatment of T2, T3, N0–1 oropharyngeal carcinoma excluding base of tongue primaries. At 5 years, a statistically significant increase in local control was observed in the hyperfractionation arm (38% vs. 56%; P = .01) and no increase in late complications was observed. A long-term follow-up analysis has also shown a small survival advantage for hyperfractionation (P = .05). Another EORTC protocol (22851) compared accelerated fractionation (1.6 Gy 3 times daily, or 72 Gy over 5 weeks) with conventional fractionation (1.8–2.0 Gy once daily, or 70 Gy over 7–8 weeks) in various intermediate to advanced H&N cancers (excluding cancers of the hypopharynx). Patients in the accelerated fractionation arm had

NCCN Guidelines Index Head and Neck Table of Contents Discussion

significantly better locoregional control at 5 years (P = .02). Disease-specific survival showed a trend in favor of the accelerated fractionation arm (P = .06). Acute and late toxicity were increased with acceleration, however, raising questions about the net advantages of accelerated fractionation. ¹¹²

The RTOG reported the results of a 4-armed, phase III, randomized clinical trial (RTOG 90-03) comparing hyperfractionation and 2 variants of accelerated fractionation versus standard fractionation. Res. 89,113 After 2 years of follow-up, both accelerated fractionation with a concomitant boost (AFX-C) and hyperfractionation were associated with improved locoregional control and disease-free survival compared with standard fractionation. However, acute toxicity was increased with accelerated fractionation. No significant difference was shown in the frequency of grade 3 or worse late effects reported at 6 to 24 months after treatment start, among the various treatment groups. Long-term follow-up confirmed a statistically significant improvement in locoregional control and overall survival with hyperfractionation compared to standard fractionation.

A meta-analysis of updated individual patient data from 15 randomized trials analyzed the effect of hyperfractionated or accelerated RT on survival of patients with H&N cancers. 114 Standard fractionation constituted the control arm in all of the trials in this meta-analysis. 190 An absolute survival benefit for altered fractionation of 3.4% at 5 years (HR 0.92; 95% CI, 0.86–0.97; *P*=.003) was reported. This benefit, however, was limited to patients younger than 60 years of age. 114 Hyperfractionation was associated with a benefit of 8% after 5 years. 115 However, the recent GORTEC 99-02 trial reported that altered fractionation did not improve outcomes when compared with conventional fractionation. 116,117 Consensus regarding altered fractionation schedules with concomitant boost or hyperfractionation for

stage III or IV oral cavity, oropharynx, supraglottic larynx, and hypopharyngeal squamous cell cancers has not yet emerged among NCCN Member Institutions. 114,118,119

Fractionation in Concurrent Chemoradiation

Panel members do not agree about the optimal radiation dose fractionation scheme to use with concurrent chemotherapy. Most published studies have used conventional fractionation (at 2.0 Gy/fraction to a typical dose of 70 Gy in 7 weeks) with single-agent high-dose cisplatin (given every 3 weeks at 100 mg/m²). Other fraction sizes (eg, 1.8 Gy, conventional), other dosing schedules of cisplatin, other single agents, multiagent chemotherapy, and altered fractionation with chemotherapy have been evaluated alone or in combination. Numerous trials have shown that modified fractionation and concurrent chemotherapy are more efficacious than modified fractionation alone. PTOG 0129 assessed accelerated fractionation with 2 cycles of concurrent cisplatin versus standard fractionation with 3 cycles of concurrent cisplatin. There was no significant difference in overall survival between the 2 arms.

Concurrent chemoradiation increases acute toxicity compared to radiation alone, although an increase in late toxicity beyond that caused by RT alone is less clear. Altered fractionation and/or multiagent chemotherapy may further increase the toxicity burden. For any chemotherapeutic approach, close attention should be paid to published reports for the specific chemotherapy agent, dose, and schedule of administration. Chemoradiation should be performed by an experienced team and should include substantial supportive care.

Radiation Techniques and IMRT

The intensity of the radiation beam can be modulated to decrease doses to normal structures without compromising the doses to the

NCCN Guidelines Index Head and Neck Table of Contents Discussion

cancer targets. ^{129,130} IMRT is an advanced form of conformal RT permitting more precise cancer targeting while reducing dose to normal tissues. ^{97,131-135} Xerostomia is a common long-term side effect of RT, which can be reduced with use of IMRT, drug therapy (eg, pilocarpine, cevimeline), salivary substitutes, and other novel approaches (eg, acupuncture). ¹³⁶⁻¹⁴¹

IMRT dose painting refers to the method of assigning different dose levels to different structures within the same treatment fraction (eg, 2.0 to gross tumor, 1.7 to microscopic tumor, <1.0 Gy to parotid gland) resulting in different total doses to different targets (eg, 70 Gy, 56 Gy, <26 Gy). ^{142,143} Although dose painting has been used to simplify radiation planning, hot spots associated with higher toxicity can occur. ^{143,144} Alternatively, separate dose plans for the low versus higher dose targets can be delivered sequentially (reduce target size and boost) or on the same day as separate fractions in twice-a-day schemas (see *Radiation Techniques* in the NCCN Guidelines for Head and Neck Cancers). ^{134,145}

IMRT is now widely used in H&N cancers and is the predominant technique used at NCCN Member Institutions. ^{146,147} It is useful in reducing long-term toxicity in oropharyngeal, paranasal sinus, and nasopharyngeal cancers by reducing the dose to one or more major salivary glands, temporal lobes, mandible, auditory structures (including cochlea), and optic structures. ^{98,137,138,148-155} Overall survival is similar between patients treated with IMRT and those receiving conventional RT. ^{149,156-158} In-field recurrences, low-grade mucositis in areas away from the cancer targets, and posterior neck hair loss can occur with IMRT. ¹⁵⁹⁻¹⁶² The application of IMRT to other sites (eg, oral cavity, larynx, hypopharynx, salivary glands) is evolving. ¹⁶³⁻¹⁷⁰

Numerous phase II studies show a decrease in late toxicity (xerostomia) without compromising tumor control for nasopharyngeal, sinonasal, and other sites. More recently, 3 randomized trials have supported the clinical benefits of IMRT in H&N cancers with regard to the reduction in xerostomia. Pow et al evaluated treatment of early-stage nasopharyngeal carcinoma with conventional RT techniques versus with IMRT.¹³⁷ The results showed a statistical improvement in salivary flow and in patient-reported quality-of-life parameters.¹³⁷ In the study by Kam et al. patients with nasopharyngeal carcinoma were randomly assigned to either IMRT or conventional 2-D RT.¹³⁸ At one year after treatment, patients in the IMRT arm had significantly lower rates of clinician-rated severe xerostomia than patients in the 2-D RT arm (39.3% vs. 82.1%; P = .001). Salivary flow rates were also higher with IMRT. The mean parotid dose was 32 Gy in the IMRT group and 62 Gy in the conventional group. Although a trend for improvement in patient-reported dry mouth was observed after IMRT, recovery was incomplete and there was no significant difference in patient-reported outcomes between the 2 arms. The authors concluded that other salivary glands may also be important and merit protection.

A recent review suggests that IMRT may be useful to preserve the optic pathway in patients with sinonasal malignancies. Data from a phase III randomized trial (PARSPORT) indicate that IMRT decreases xerostomia when compared with conventional RT in patients with non-nasopharyngeal carcinoma. Is In this trial, patients with T1–T4, N0–N3, M0 disease were treated to a total dose of 60 or 65 Gy in 30 fractions either with conventional RT (ie, parallel opposed technique) or with IMRT; 80 patients with oropharyngeal and 14 patients with hypopharyngeal tumors were included. Grade 2 or worse (LENT-SOMA scale) xerostomia 2 years after treatment was seen in 83% of patients receiving conventional RT versus 29% of patients in the IMRT group

NCCN Guidelines Index Head and Neck Table of Contents Discussion

(*P*< .0001). No differences were seen in the rates of locoregional control or survival.

A new section on palliative RT was recently added to the NCCN Guidelines (see *Radiation Techniques* in the NCCN Guidelines for Head and Neck Cancers). Although several regimens are provided, no single regimen is preferred; specific regimens vary widely among NCCN Member Institutions. ¹⁷¹⁻¹⁷³ Any palliative RT regimen that might cause severe toxicities should be avoided. More hypofractionated regimens may be useful for patients with end-stage disease. ¹⁷⁴

Brachytherapy

Brachytherapy has been used less often in recent years because of improved local control obtained with concurrent chemoradiation. However, brachytherapy still has a role for lip and oral cavity cancers (see *Principles of Radiation Therapy* in the NCCN Guidelines for Cancer of the Lip and Cancer of the Oral Cavity). 175

Follow-up After RT

For patients whose cancer has been treated with RT, the recommended follow-up (see *Follow-up Recommendations* in the NCCN Guidelines for Head and Neck Cancers) includes an assessment of thyroid function (ie, the thyroid stimulating hormone [TSH] level should be determined every 6–12 months). Increased TSH levels have been detected in 20% to 25% of patients who received neck irradiation; patients are at increased risk of hypothyroidism. ¹⁷⁶⁻¹⁷⁸

Principles of Nutrition and Supportive Care

A new section on *Principles of Nutrition* was recently added to the NCCN Guidelines. This section outlines nutritional management and supportive care for patients with H&N cancers who are prone to weight

loss, which can often be severe, as a result of treatment-related toxicity, disease, and health behaviors such as poor nutritional habits. 18,179,180 Patients with H&N cancers are also at risk for dehydration. Multidisciplinary evaluation is integral to minimizing or decreasing weight loss and should involve a registered dietitian and a speech-language/swallowing therapist.

Patients who have had significant weight loss (>10% body weight) clearly need nutritional evaluation and close monitoring of their weight to prevent further weight loss. ^{181,182} In addition, all patients should receive nutritional evaluation before and after treatment to assess the need for interventions (eg, enteral support via feeding tubes). ^{183,184} Patients are also at risk for problems with speech. Treatment and/or the progression of their disease may cause deterioration in their ability to speak and/or swallow. ¹⁸⁵⁻¹⁸⁷ Evaluation by a speech-language/swallowing therapist is valuable before and after treatment, because it can help mitigate potential problems. ¹⁸⁸⁻¹⁹⁰ Patients are also at risk for dental problems (see this Discussion and the NCCN Guidelines for Head and Neck Cancers). ¹⁸

NCCN Panel Members agree that reactive feeding tube placement is appropriate in selected patients with H&N cancers. ^{180,184} There is no consensus about whether prophylactic tube placement is appropriate, although this is commonly done if high-risk patients will be receiving intense multimodality therapy that is anticipated to cause severe problems (eg, concurrent chemoradiation). ^{180,182,191} The NCCN Guidelines provide recommendations for prophylactic tube placement, which should be strongly considered in high-risk patients (eg, those with severe pretreatment weight loss, ongoing dehydration or dysphagia, significant comorbidities, severe aspiration, anticipated swallowing issues) (see *Principles of Nutrition: Management and Supportive Care* in the NCCN Guidelines for Head and Neck Cancers). The NCCN

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

Guidelines do not recommend prophylactic tube placement in lower-risk patients (ie, those without significant pretreatment weight loss, significant aspiration, or severe dysphagia), although these patients need to carefully monitor their weight.

Principles of Dental Evaluation and Management

For the 2014 update, a new section on *Principles of Dental Evaluation and Management* was added (see the NCCN Guidelines for Head and Neck Cancers). Patients with H&N are at risk of oral and dental complications after RT because of treatment-induced xerostomia and salivary gland dysfunction which are associated with increased dental caries. ¹⁹²⁻¹⁹⁴ In addition, RT to the dental hard tissues is also associated with bone demineralization and trismus of the masticatory muscles. Using IMRT and limiting the RT dose to the teeth have been shown to decrease xerostomia and damage to the teeth. ^{192,193,195-202} Dental/oral evaluation and management can help decrease dental caries and associated problems such as dentoalveolar infection and osteoradionecrosis. ^{194,195,202-215}

The recommended dental/oral evaluations before, during, and after RT are described in detail in the algorithm and summarized here. A dental/oral treatment plan needs to be implemented before RT and should include the following: 1) eliminating potential sources of infection; 2) performing any dental extractions at least 2 weeks before RT; 3) treating active dental caries and periodontal disease; 4) treating oral candidiasis; and 5) educating patients about preventive strategies. Some of the strategies to decrease oral and dental complications include: 1) decrease dry mouth (eg, by using salivary substitutes and stimulation); decrease dental caries (eg, by using topical fluoride); decrease dentoalveolar infection (eg, with frequent evaluations to detect and treat disease promptly); 4)

decrease osteoradionecrosis (eg, by extracting teeth before RT);²⁰⁷ 5) decrease trismus of the masticatory muscles (eg, by using custom mouth opening devices to maintain range of motion);²²⁶⁻²²⁸ and 6) need for evaluations during and after treatment to help minimize complications.^{216,217,223,229,230}

During and after treatment, the goals of dental/oral management include: 1) managing xerostomia; 2) preventing trismus; and 3) detecting and treating oral candidiasis.²⁰³ Additional goals after treatment include: 1) preventing and treating dental caries; 2) preventing postradiation osteonecrosis; and 3) preventing oral candidiasis.²⁰³

Cancer of the Lip

The NCCN Guidelines for squamous cell carcinoma of the lip generally follow accepted clinical practice patterns established over several decades. No randomized clinical trials have been conducted that can be used to direct therapy. The incidence of lymph node metastases (especially in early-stage lower lip cancer) is low, averaging less than 10%. The risk of lymph node metastases is related to the location, size, and grade of the primary tumor. Elective neck dissection or neck irradiation can be avoided in patients with early-stage disease and a clinically negative neck. Treatment recommendations are based on clinical stage, medical status of the patient, anticipated functional and cosmetic results, and patient preference.

Workup and Staging

The workup for patients with squamous cell carcinoma of the lip consists of a complete H&N examination, biopsy, and other appropriate studies (see *Workup* in the NCCN Guidelines for Cancer of the Lip). Dental evaluation (dental panoramic x-ray), CT scan, or MRI is done as

NCCN Guidelines Index Head and Neck Table of Contents Discussion

clinically indicated to better assess soft tissue or nodal spread or if bone invasion is suspected. A new section on *Principles of Dental Evaluation* and Management was added for the 2014 update (see this Discussion and the NCCN Guidelines for Head and Neck Cancers).

The AJCC TNM staging system reflects tumor size, extension, and nodal disease (see Table 1).16 This system does predict the risk for local recurrence. The location of the primary tumor also is predictive. Tumors in the upper lip and commissural areas have a higher incidence of lymph node metastases at the time of diagnosis. Systemic dissemination is rare, occurring in approximately 10% to 15% of patients, most often in those with uncontrolled locoregional disease.

Treatment

Treatment of the Primary

The treatment of lip cancer is governed by the stage of the disease. The choice of a local treatment modality is based on the expected functional and cosmetic outcome. In early-stage cancers (T1-2, N0), surgery is preferred and radiation is an option for local control (see the NCCN Guidelines for Cancer of the Lip). 231-233 Some very small or superficial cancers are managed more expeditiously with a surgical resection without resultant functional deformity or an undesired cosmetic result. A superficial cancer that occupies most of the lower lip, however, is best managed with RT.²³⁴ Some advanced lip cancers can cause a great deal of tissue destruction and secondary deformity; surgery is preferred in this clinical setting. Surgery is also preferred for advanced cancers with extension into the bone. Patients with resectable T3-T4a, N0; or any T, N1-3 disease who have a poor surgical risk should be treated as for very advanced disease (see the NCCN Guidelines for Very Advanced Head and Neck Cancers). 234

Management of the Neck

The management of the neck is also governed by stage and the location of the tumor. For example, the lymphatics of the upper lip are very extensive. Thus, tumors in this location are more apt to spread to deep superior jugular nodes. The position of the tumor along the lip also can be helpful in predicting the pattern of lymph node spread. A midline location can place a patient at higher risk for contralateral disease. For patients with advanced disease (T3, T4a) and an N0 neck, an ipsilateral or bilateral neck dissection is an option (see the NCCN Guidelines for Cancer of the Lip). When a patient presents with palpable disease, all appropriate nodal levels should be dissected. In patients who appear to have a complete response after either RT or chemoradiation, post-treatment evaluation with imaging can be used to guide the use of neck dissection (see Principles of Surgery in the NCCN Guidelines for Head and Neck Cancers).

Radiation Therapy

For the 2014 update, extensive revisions were made to the radiation quidelines (see Principles of Radiology in the NCCN Guidelines for Cancer of the Lip; see also Head and Neck Radiation Therapy in this Discussion). RT, when used as definitive treatment, may consist of external-beam RT with (or without) brachytherapy, depending on the size of the tumor. Brachytherapy should only be performed at centers with expertise. The NCCN algorithm provides recommendations for low-dose rate and high-dose rate brachytherapy (see Principles of Radiation Therapy in the NCCN Guidelines for Cancer of the Lip). 235,236 The conventional fractionation dose required also depends on tumor size, but doses of 66 to 72 Gy are adequate to control the disease (see Principles of Radiation Therapy in the NCCN Guidelines for Cancer of the Lip).

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

In the adjuvant setting, doses of 60 to 66 Gy are required, depending on the pathologic features. In both definitive and adjuvant settings, the neck is treated with doses that address adverse features, such as positive margins or invasion (perineural, vascular, and/or lymphatic).²³⁷ The fraction size to the intermediate- and low-risk sites ranges from 44 Gy (2.0 Gy/fraction) to 60 Gy (1.6 Gy fraction.) For these sites of suspected subclinical spread, suggested doses are 44–54 Gy if 3-D conformal RT is used or 54–60 Gy if IMRT is used, depending on the dose/fraction (1.6–2.0 Gy/fraction).

Follow-up/Surveillance

Recommendations for surveillance are provided in the algorithm (see *Follow-up Recommendations* in the NCCN Guidelines for Head and Neck Cancers).

Cancer of the Oral Cavity

The oral cavity includes the following subsites: buccal mucosa, upper and lower alveolar ridge, retromolar trigone, floor of the mouth, hard palate, and anterior two thirds of the tongue. The area has a rich lymphatic supply, and initial regional node dissemination is to nodal groups at levels I to III.

Regional node involvement at presentation is evident in approximately 30% of patients, but the risk varies according to subsite. For example, primaries of the alveolar ridge and hard palate infrequently involve the neck, whereas occult neck metastasis is common (50%–60%) in patients with anterior tongue cancers. In general, many patients undergo either ipsilateral or bilateral neck dissection, which is guided by tumor thickness. If definitive RT is chosen for treatment of T1–2, N0 disease, the fraction size to the intermediate- and low-risk sites ranges from 44 Gy (2.0 Gy/fraction) to 60 Gy (1.6 Gy fraction) (see *Principles of*

Radiation Therapy in the NCCN Guidelines for Cancer of the Oral Cavity). For these sites of suspected subclinical spread, suggested doses are 44–54 Gy if 3-D conformal RT is used or 54–60 Gy if IMRT is used, depending on the dose/fraction (1.6–2.0 Gy/fraction).

Workup and Staging

Imaging studies to evaluate mandibular involvement and a careful dental evaluation (including jaw imaging, as clinically indicated) are particularly important for staging (see Table 1) and planning therapy for oral cavity cancers in addition to a complete H&N examination, biopsy, and other appropriate studies (see *Workup* in the NCCN Guidelines for Cancer of the Oral Cavity). For patients who appear to have stage III to IV disease, PET-CT may alter management by upstaging patients. Nutrition, speech, and swallowing evaluations are recommended for selected at-risk patients (see *Principles of Nutrition* in this Discussion and in the NCCN Guidelines for Head and Neck Cancers). A new section on *Principles of Dental Evaluation and Management* was added for the 2014 update (see this Discussion and the NCCN Guidelines for Head and Neck Cancers).

Treatment

Surgery and RT represent the standards of care for early-stage and locally advanced resectable lesions in the oral cavity. The specific treatment is dictated by the TN stage and, if N0 at diagnosis, by the risk of nodal involvement (see the NCCN Guidelines for Cancer of the Oral Cavity). Multidisciplinary team involvement is particularly important for this site, because critical physiologic functions may be affected such as mastication, deglutition, and articulation of speech. Most panel members prefer surgical therapy for resectable oral cavity tumors, even for more advanced tumors. The functional outcome after primary surgical management is often quite good, given advances in

NCCN Guidelines Index Head and Neck Table of Contents Discussion

reconstruction using microvascular techniques. Therefore, organ preservation using chemotherapy has received less attention for the initial management of patients with oral cavity cancers. Definitive RT may be offered to selected patients who are medically inoperable or refuse surgery. For the 2014 update, extensive revisions were made to the radiation guidelines (see *Principles of Radiology* in the NCCN Guidelines for Cancer of the Oral Cavity; see also *Head and Neck Radiation Therapy* in this Discussion).

For patients with early-stage oral cavity cancers, the recommended initial options are resection (preferred) of the primary or definitive RT. For the 2014 update, the option of using sentinel lymph node biopsy was added, which may be used to identify occult cervical metastases (see Sentinel Lymph Node Biopsy in the Principles of Surgery in the NCCN Guidelines for Head and Neck Cancers). 239-245 Patients may be spared the morbidity of an elective neck dissection if they do not have occult cervical metastases. However, sentinel lymph node biopsy should be done in centers with expertise in this technique; it is less accurate for floor of the mouth tumors. 239,240 Postsurgical adjuvant treatment options depend on whether adverse features are present. For patients with resected oral cavity cancers who have the adverse pathologic features of extracapsular nodal spread with [or without] a positive mucosal margin, postoperative chemotherapy/RT (preferred, category 1) is the recommended treatment. For patients with positive margins, options include: 1) re-resection; 2) RT; or 3) consider chemotherapy/RT (for T2 only). For patients with other risk features, options include RT or consider chemotherapy/RT.

For patients with advanced-stage, resected oral cavity cancers who have the adverse pathologic features of extracapsular nodal spread and/or a positive mucosal margin, recommended postoperative adjuvant options include: 1) chemotherapy/RT (preferred, category 1);

2) re-resection of positive margins (if technically feasible); or 3) RT.⁷⁷⁻⁸¹ For other risk features—such as pT3 or pT4 primary, N2 or N3 nodal disease, nodal disease in levels IV or V, perineural invasion, or vascular tumor embolism—clinical judgment should be used when deciding to either use RT alone or add chemotherapy to RT (see the NCCN Guidelines for Cancer of the Oral Cavity).

Follow-up/Surveillance

Recommendations for surveillance are provided in the algorithm (see *Follow-up Recommendations* in the NCCN Guidelines for Head and Neck Cancers).

Cancer of the Oropharynx

The oropharynx includes the base of the tongue, tonsils, soft palate, and posterior pharyngeal wall. The oropharynx is extremely rich in lymphatics. Depending on the subsite involved, 15% to 75% of patients present with lymph node involvement.

Workup and Staging

A multidisciplinary consultation is encouraged including a registered dietitian and a speech-language/swallowing therapist (see *Principles of Nutrition* in this Discussion and in the NCCN Guidelines for Head and Neck Cancers). Accurate staging (see Table 2) depends on a complete H&N examination and appropriate imaging studies (see *Workup* in NCCN Guidelines for Cancer of the Oropharynx). Technology 16,246 Tumor HPV testing is recommended for cancers of the oropharynx, because prior HPV infection is related to the development of a significant proportion of oropharyngeal cancers (see the next section on *HPV Testing*). Testing).

HPV Testing

Studies have documented an increase in the incidence of HPV-related cancer, which is estimated at 60% to 70% of newly diagnosed cancers

NCCN Guidelines Index Head and Neck Table of Contents Discussion

of the oropharynx in the United States and parts of the European Union. 12,248-251 HPV type 16 appears to be related to the development of oropharyngeal cancer. 5,252 Analyses of clinical trials indicate that patients with HPV-positive cancers have improved response to treatment and survival (overall and progression-free survival) when compared with HPV-negative tumors. 120,253-256 Consensus is increasing that HPV status should be used as a stratification factor or should be addressed in separate trials (HPV related vs. unrelated disease) for which patients with oropharyngeal cancer are eligible. Some clinicians have recently suggested that less-intense treatment may be adequate for HPV-positive oropharyngeal cancers (ie, deintensification); however, the available data supporting this assertion are limited, and this strategy is not currently recommended by the NCCN Panel. 257,258 The NCCN Panel believes that HPV status should not be a routine consideration in treatment selection at this time, except for cancers of unknown primary (see Occult Primary Cancer in this Discussion and Occult Primary in the NCCN Guidelines for Head and Neck Cancers). 259 Additional studies are needed to understand the effect of HPV status on response to different therapies, treatment outcome, and patterns of failure. Recent studies have assessed the relation of HPV to other prognostic or predictive factors such as smoking history and stage. ^{260,261} Clinical trial groups are reporting retrospective analyses of response to therapy in HPV-related versus HPV-unrelated oropharyngeal cancers. 120,253,255,262 Panel members urge that patients with HPV-related cancers be enrolled in clinical trials evaluating biological and treatment-related questions.²⁶³

HPV testing options in a clinical setting include HPV in situ hybridization and a surrogate marker, p16 immunohistochemistry (which is a more widely available test that strongly correlates with HPV status and is similarly associated with improved prognosis). 120,254,255,264 Sufficient pathologic material for HPV testing can be obtained by fine-needle

aspiration (FNA).²⁶⁵ Panel members note that HPV testing may prompt questions about prognosis (ie, a favorable or a less favorable forecast) and sexual history that the clinician should be prepared to address. Thus, without a specific reason for testing, HPV information may add anxiety and stress for some patients. Alternatively, gaining an understanding of the etiology for one's cancer can reduce anxiety for some patients.

Treatment

The treatment algorithm has been divided into 3 staging categories: 1) T1–2, N0–1; 2) T3–4a, N0–1; and 3) any T, N2–3. Of note, the following categories are treated as advanced cancer: 1) T4b, any N; 2) unresectable nodal disease; or 3) unfit for surgery (see the NCCN Guidelines for Very Advanced Head and Neck Cancers).

Early-stage (T1–2, N0–1) oropharyngeal cancers may be treated with:

1) primary surgery—more specifically, transoral or open resection of the primary—(with or without neck dissection); or 2) definitive RT.^{51,54,266}

Panel members felt that the third option of RT plus systemic therapy (category 2B for systemic therapy) was only appropriate for T2, N1 (see the NCCN Guidelines for Cancer of the Oropharynx). Note that a category 2B recommendation indicates that most, but not all, panel members agree that the intervention is appropriate (>50% but <85%). Adjuvant chemotherapy/RT is recommended (category 1) for adverse pathologic features of extracapsular nodal spread with (or without) positive mucosal margins.^{77,78,80}

For locally advanced resectable disease (T3–4a, N0–1; or any T, N2–3), 3 treatment options are recommended (see the NCCN Guidelines for Cancer of the Oropharynx), in addition to enrollment in multimodality clinical trials. The 3 options are: 1) concurrent systemic therapy/RT (salvage surgery is used for managing residual or recurrent disease);¹²⁵

NCCN Guidelines Index Head and Neck Table of Contents Discussion

2) transoral or open resection of the primary and neck (with appropriate adjuvant therapy [chemotherapy/RT or RT]); or 3) induction chemotherapy (category 3) (followed by RT or chemotherapy/RT), although panel members had a major disagreement for induction therapy. 51,54,267

Concurrent systemic therapy/RT—with high-dose cisplatin as the preferred (category 1) systemic agent—is recommended for treatment of locally or regionally advanced (T3–4a, N0–1, or any T, N2–3) cancer of the oropharynx (see *Principles of Systemic Therapy* in the NCCN Guidelines for Head and Neck Cancers). Many panel members did not agree that induction chemotherapy should be recommended for locally or regionally advanced cancer of the oropharynx. This disagreement is reflected by the category 3 recommendations for oropharyngeal cancer (see *The Induction Chemotherapy Controversy* in this Discussion and the NCCN Guidelines for Cancer of the Oropharynx). ^{125,268-277} Note that a category 3 recommendation indicates that only a few panel members agree (<25%) that the intervention is appropriate; most disagree. Most panel members agree that concurrent systemic therapy with RT is the standard therapy for fit patients with locally advanced disease.

The Induction Chemotherapy Controversy

Defining the role of induction chemotherapy in the management of locally or regionally advanced H&N cancers has generated considerable discussion within the NCCN Panel in recent years. The algorithm for the management of advanced oropharyngeal cancer (see the NCCN Guidelines for Cancer of the Oropharynx) illustrates the lack of consensus among NCCN Member Institutions despite the extensive discussion. Thus, induction chemotherapy has a category 3 recommendation (ie, major disagreement) for the management of both locally and regionally advanced oropharyngeal cancer (ie, T3–4a, N0–1, any T, N2–3). However in other sites, category 2A and 2B

recommendations for induction chemotherapy are common based on the update from RTOG 91-11 (see *Cancer of the Glottic Larynx*, *Cancer of the Supraglottic Larynx*, *Cancer of the Hypopharynx*, *Cancer of the Nasopharynx*, *Occult Primary*, and *Very Advanced H&N Cancer* in the NCCN Guidelines for Head and Neck Cancers). For selected patients with hypopharyngeal and laryngeal cancers less than T4a in extent (for which total laryngectomy is indicated, if managed surgically), induction chemotherapy—used as part of a larynx preservation strategy—is category 2A.

Panel members feel that induction chemotherapy should only be done in centers with expertise in these regimens because of challenges associated with appropriate patient selection and management of treatment-related toxicities. Residual toxicity from induction chemotherapy may also complicate the subsequent delivery of definitive RT or chemotherapy/RT. For laryngeal cancer, RT alone (category 1) is recommended after a complete or partial response with induction chemotherapy; chemotherapy/RT is a category 2B recommendation after a partial response.

A summary of the data helps provide some perspective on the NCCN Panel's recommendations. Most randomized trials of induction chemotherapy followed by RT and/or surgery compared to locoregional treatment alone, which were published in the 1980s and 1990s, did not show an improvement in overall survival with the incorporation of chemotherapy.²⁷³ However, a change in the pattern of failure with less distant metastases was noted in some studies.²⁷⁹ Also, a correlation was noted between response to induction chemotherapy and subsequent durable response to radiation.^{279,280} Thus, the concept developed that in selected patients, induction chemotherapy could facilitate organ preservation, avoid morbid surgery, and improve overall quality of life of the patient even though overall survival was not

NCCN Guidelines Index Head and Neck Table of Contents Discussion

improved. Because total laryngectomy is among the procedures most feared by patients, ²⁸¹ larynx preservation was the focus of initial studies.

Two randomized studies—the Veterans Affairs (VA) Laryngeal Cancer Study Group trial in advanced laryngeal cancer and the EORTC trial predominantly in advanced hypopharynx cancer—established the role of induction cisplatin/5-FU chemotherapy followed by definitive RT in responding patients as an alternative treatment to primary total laryngectomy and postoperative radiation, offering potential larynx preservation without compromise in survival (see Cancer of the Larynx and Cancer of the Hypopharynx in this Discussion). 279,280 Yet even in this setting, the role of induction chemotherapy decreased with time. Randomized trials and related meta-analyses indicated that concurrent systemic RT (with cisplatin being the best studied agent) offered superior locoregional tumor control and survival compared to radiation alone, 282-292 and shorter duration of therapy compared to induction therapy followed by radiation. Meta-analyses reported that concurrent systemic RT was more efficacious than an induction chemotherapy strategy. 273,277 In the larvnx preservation setting, Intergroup 91-11 compared radiation alone, concurrent cisplatin/radiation, and induction cisplatin/5-FU followed by radiation; all arms had surgery for salvage. The concurrent arm had the highest larynx preservation rate (see Cancer of the Larynx in this Discussion). 293 A recent long-term follow-up of 91-11 confirmed that concomitant chemotherapy/RT improved the larynx preservation rate and that induction chemotherapy was not superior to RT alone.²⁷⁸ However, overall survival did not differ among the treatment arms.

Nonetheless, interest in the role of induction chemotherapy was renewed several years ago for a few reasons. Advances in surgery, RT, and concurrent systemic therapy/RT have yielded improvements in local/regional control; thus, the role of distant metastases as a source of treatment failure has increased and induction chemotherapy allows greater drug delivery for this purpose. 294,295 Clinicians have increasing concern regarding the long-term morbidity of concurrent systemic therapy/RT, and thus have increasing interest in exploring alternative approaches that might have a more favorable side-effect profile.²⁹⁶ Finally, a more effective triplet chemotherapy regimen has been identified for induction chemotherapy compared to the standard cisplatin/5-FU used in induction trials of the 1980s and 1990s, and in the related meta-analyses. Three phase III trials compared induction cisplatin plus infusional 5-FU with (or without) the addition of a taxane (docetaxel or paclitaxel) followed by the same locoregional treatment. Results showed significantly improved outcomes (response rates, disease-free survival, or overall survival depending on the trial) for patients in the 3-drug induction group compared to those receiving 2 drugs (cisplatin plus 5-FU). 271,272,275,276 A randomized trial in the larynx preservation setting similarly showed superior larynx preservation outcome when induction docetaxel/cisplatin/5-FU (TPF) and cisplatin/5-FU were compared.²⁹⁷

However, a clear advantage in overall survival has not yet been shown when adding induction chemotherapy to concurrent chemoradiation. 270,298,299 More recently, both the DeCIDE and the PARADIGM trials did not convincingly show a survival advantage with the incorporation of induction chemotherapy. ^{298,299} In patients with stage III or IV squamous cell H&N cancers, a randomized phase II study compared: 1) induction TPF followed by concurrent cisplatin/5-FU with RT; versus 2) concurrent cisplatin/5-FU with RT alone; a higher radiologic complete response rate was reported with the incorporation of induction chemotherapy.³⁰⁰ A follow-up and larger study is in progress.

NCCN Guidelines Index Head and Neck Table of Contents Discussion

After a complete or partial response with induction chemotherapy for patients with laryngeal cancer, RT alone is recommended (category 1);²⁷⁸ chemotherapy/RT is a category 2B recommendation after a partial response²⁹⁷ (see NCCN Guidelines for Cancer of the Glottic Larynx, Cancer of the Supraglottic Larynx). After induction chemotherapy, panel members agree that weekly cetuximab or carboplatin are reasonable agents to use with concurrent radiation. ^{298,301-303} Of note, investigators in the DeCIDE trial used the combination of docetaxel/hydroxyurea/5-FU with RT after induction chemotherapy in this setting.²⁹⁹ Because of toxicity concerns, high-dose cisplatin (100 mg/m² every 21 days × 3) is not recommended after induction cisplatin-based chemotherapy. 270,302 Thus, this highlights concerns that any efficacy gains of induction may be offset by the use of better tolerated—but potentially less effective concurrent regimens or poorer patient compliance with the radiation-based part of treatment. Because of these uncertainties, enrollment of patients in appropriate clinical trials is particularly encouraged. Outside of a clinical trial, proceeding directly to concurrent systemic RT—high-dose cisplatin preferred—is considered the gold standard by many NCCN Panel Members in several settings (see Principles of Systemic Therapy in the NCCN Guidelines for Head and Neck Cancers). 77-80,282,304 When induction chemotherapy is used, data show that the addition of a taxane to cisplatin/5-FU, of which TPF is the most extensively studied, is more efficacious than cisplatin/5-FU. However, paclitaxel, cisplatin, and 5-FU is also an option for induction chemotherapy.²⁷¹

Radiation Therapy Fractionation

For the 2104 update, extensive revisions were made to the radiation guidelines (see *Principles of Radiology* in the NCCN Guidelines for Cancer of the Oropharynx; see also *Head and Neck Radiation Therapy* in this Discussion). Standard conventional fractionation is preferred

when RT is used definitively for T1–2, N0 tumors. Altered fractionation is appropriate for selected T1–2, N1 tumors, particularly if concurrent chemotherapy is not used. The recommended schedules are shown in the algorithm (see *Principles of Radiation Therapy* in the NCCN Guidelines for Cancer of the Oropharynx). Recent data suggest that IMRT may be useful for decreasing toxicity.^{305,306}

Follow-up/Surveillance

Recommendations for surveillance are provided in the algorithm (see *Follow-up Recommendations* in the NCCN Guidelines for Head and Neck Cancers).

Cancer of the Hypopharynx

The hypopharynx extends from the superior border of the hyoid bone to the lower border of the cricoid cartilage and is essentially a muscular, lined tube extending from the oropharynx to the cervical esophagus. For staging purposes, the hypopharynx is divided into 3 areas: 1) the pyriform sinus (the most common site of cancer in the hypopharynx); 2) the lateral and posterior pharyngeal walls; and 3) the postcricoid area.

Workup and Staging

A multidisciplinary consultation is encouraged. Accurate staging (see Table 2) depends on a complete H&N examination coupled with appropriate studies (see *Workup* in the NCCN Guidelines for Cancer of the Hypopharynx). At the time of diagnosis, approximately 60% of patients with cancer of the hypopharynx have locally advanced disease with spread to regional nodes. Furthermore, autopsy series have shown a high rate of distant metastases (60%) involving virtually every organ. For patients with cancer of the hypopharynx, the prognosis can be quite poor despite aggressive combined modality treatment.

NCCN Guidelines Index Head and Neck Table of Contents Discussion

Treatment

Patients with resectable disease are divided into 2 groups based on the indicated surgical options: 1) those with early-stage cancer (most T1, N0; selected T2, N0) amenable to larynx preserving (conservation) surgery; and 2) those with advanced resectable cancer (T1, N+; T2–4a, any N) requiring (amenable to) pharyngectomy with total laryngectomy. The surgery and RT options for the former group (see the NCCN Guidelines for Cancer of the Hypopharynx) represent a consensus among the panel members. For the 2014 update, extensive revisions were made to the radiation guidelines (see *Principles of Radiology* in the NCCN Guidelines for Cancer of the Hypopharynx; see also *Head and Neck Radiation Therapy* in this Discussion).

Patients with more advanced disease (defined as T1, N+; T2-3, any N)—for whom the indicated surgical option is total laryngectomy and partial (or total) pharyngectomy—may be managed with 3 approaches (see the NCCN Guidelines for Cancer of the Hypopharynx) in addition to enrollment in multimodality clinical trials: 1) induction chemotherapy followed by definitive RT (category 1 for RT) if a complete response was achieved at the primary site²⁷⁹ or followed by other options depending on the response; 2) surgery with neck dissection and postoperative radiation or chemoradiation as dictated by pathologic risk features; or 3) concurrent systemic therapy/RT (see the NCCN Guidelines for Cancer of the Hypopharynx). When using concurrent systemic therapy/RT, the preferred systemic agent is high-dose cisplatin (category 1) (see Principles of Systemic Therapy in the NCCN Guidelines for Head and Neck Cancers). Fractionation for RT is discussed in the algorithm (see Principles of Radiation Therapy in the NCCN Guidelines for Cancer of the Hypopharynx). Given the functional loss resulting from this surgery and the poor prognosis, participation in multimodality clinical trials is emphasized.

The recommendation of the induction chemotherapy/definitive RT option is based on an EORTC randomized trial.²⁷⁹ This trial enrolled 194 eligible patients with stage II to IV resectable squamous cell carcinoma of the pyriform sinus (152 patients) and aryepiglottic fold (42 patients), excluding patients with T1 or N2c disease. Patients were randomly assigned either to laryngopharyngectomy and postoperative RT, or to chemotherapy with cisplatin and 5-FU for a maximum of 3 cycles, followed by definitive RT. In contrast to a similar approach used for laryngeal cancer, a complete response to induction chemotherapy was required before proceeding with definitive RT. The published results showed equivalent survival, with median survival duration and a 3-year survival rate of 25 months and 43%, respectively, for the surgery group versus 44 months and 57%, respectively, for the induction chemotherapy group.²⁷⁹ A functioning larynx was preserved in 42% of patients who did not undergo surgery. Local or regional failure rates did not differ between the surgery-treated patients and chemotherapy-treated patients, although the chemotherapy recipients did show a significant reduction in distant metastases as a site of first failure (P=.041).

For induction chemotherapy as part of a larynx preservation strategy, inclusion of only patients with the specified TN stages is recommended. Success on larynx preservation with an induction chemotherapy strategy is best established for patients who had a complete response to induction therapy at the primary site and stable or improved disease in the neck. A randomized trial showed that an alternating regimen of cisplatin/5-FU with RT yielded larynx preservation, progression-free interval, and overall survival rates equivalent to those obtained with induction platinum/5-FU followed by RT.³⁰⁸ Given available randomized data demonstrating the superiority of TPF compared with PF for

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

induction chemoradiation, the triplet is now recommended as induction for this approach. 149,154,297

As noted in the algorithm, surgery is recommended if less than a partial response (or a partial response) occurs after induction chemotherapy (see the NCCN Guidelines for Cancer of the Hypopharynx). The nature of the operation will depend on the stage and extent of the tumor. Partial laryngeal surgery may still be considered, although most patients will require total laryngectomy. In this situation, or when primary surgery is the selected management path, postoperative chemotherapy/RT is recommended (category 1) for the adverse pathologic features of extracapsular nodal spread and/or positive mucosal margin. For other risk features, clinical judgment should be used when deciding to use RT alone or when considering adding chemotherapy to RT (see the NCCN Guidelines for Cancer of the Hypopharynx). Severe late toxicity appears to be associated with the amount of RT.²⁹⁶ Options for patients with T4a, any N disease include surgery plus neck dissection (preferred) followed by adjuvant chemotherapy/RT or RT, multimodality clinical trials, or several category 3 recommendations (see the NCCN Guidelines for Cancer of the Hypopharynx).

Follow-up/Surveillance

Recommendations for surveillance are provided in the algorithm (see *Follow-up Recommendations* in the NCCN Guidelines for Head and Neck Cancers).

Cancer of the Nasopharynx

Carcinoma of the nasopharynx is uncommon in the United States. Among H&N cancers, it has among the highest propensity to metastasize to distant sites. Nasopharyngeal cancer also poses a significant risk for isolated local recurrences after definitive radiation (without chemotherapy) for locally advanced disease. ³⁰⁹⁻³¹² Regional recurrences are uncommon in this disease, occurring in only 10% to 19% of patients. ^{312,313} The NCCN Guidelines for the evaluation and management of carcinoma of the nasopharynx attempt to address risk for both local and distant disease. Stage is accepted as prognostically important. The prognostic significance of histology is still controversial. RT was the standard treatment for all stages of this disease, until the mid-1990s, when trial data showed improved survival for locally advanced tumors treated with concurrent RT and cisplatin. ³⁰⁴ For the 2014 update, extensive revisions were made to the radiation guidelines (see *Principles of Radiology* in the NCCN Guidelines for Cancer of the Nasopharynx; see also *Head and Neck Radiation Therapy* in this Discussion).

Workup and Staging

The workup of nasopharyngeal cancer includes a complete H&N examination and other studies (see the NCCN Guidelines for Cancer of the Nasopharynx). These studies are important to determine the full extent of tumor in order to assign stage appropriately and to design radiation ports that will encompass all the disease with appropriate doses. Multidisciplinary consultation is encouraged. The 2010 AJCC staging classification (7th edition) is used as the basis for treatment recommendations (see Table 2).¹⁶

Treatment

Patients with T1, N0, M0 nasopharyngeal tumors may be treated with definitive RT alone (see the NCCN Guidelines for Cancer of the Nasopharynx). For early-stage cancer in this setting, radiation doses of 66 to 70 Gy given with standard fractions are necessary for control of the primary tumor and involved lymph nodes (see *Principles of Radiation Therapy* in the NCCN Guidelines for Cancer of the

NCCN Guidelines Index Head and Neck Table of Contents Discussion

Nasopharynx). The local control rate for these tumors ranges from 80% to 90%, whereas T3–4 tumors have a control rate of 30% to 65% with RT alone.^{314,315}

The combination of RT and concurrent platinum-based chemotherapy followed by adjuvant cisplatin/5-FU has been shown to increase the local control rate from 54% to 78%. The Intergroup trial 0099, which randomly assigned patients to chemotherapy plus external-beam RT versus external radiation alone, closed early when an interim analysis disclosed a significant survival advantage favoring the combined chemotherapy and radiation group. The addition of chemotherapy also decreased local, regional, and distant recurrence rates. A similar randomized study conducted in Singapore, which was modeled after the Intergroup treatment regimen, continued to show the benefit of adding chemotherapy to RT. After combined chemotherapy and radiation, adjuvant chemotherapy was also given in this trial. In addition, the administration of the cisplatin dose was spread out over several days, and this regimen appeared to reduce toxicity while still providing a beneficial antitumor effect.

Another phase III randomized trial showed that concurrent chemotherapy/RT (using weekly cisplatin) increased survival when compared with RT alone.³¹⁷ Five-year overall survival was 70% for the chemotherapy/RT group versus 59% for the RT group. A randomized trial compared chemotherapy/RT using cisplatin versus carboplatin and found that the 3-year overall survival rates were similar (78% vs. 79%).³⁰³ However, the NCCN Guidelines recommend cisplatin for chemotherapy/RT in patients who do not have a contraindication to the drug, because more data from randomized trials support the use of cisplatin in this setting (see *Principles of Systemic Therapy* in the NCCN Guidelines for Head and Neck Cancers).^{304,317} A recent phase III randomized trial compared concurrent chemotherapy/RT with (or

without) adjuvant chemotherapy (cisplatin/5-FU).318 The addition of adjuvant chemotherapy did not lead to a significant improvement in the reported outcomes including overall survival, although long-term survival data are not yet available. Based on this study, the NCCN Panel revised the recommendation to category 2A for concurrent chemoradiotherapy (cisplatin) with adjuvant chemotherapy for nasopharyngeal cancer; previously, the recommendation had been category 1. For the 2014 update, the panel also added a new option of concurrent chemoradiotherapy (cisplatin) without adjuvant chemotherapy with a category 2A recommendation. The NCCN Guidelines recommend 2 options for both T1, N1-3; and for T2-T4, any N lesions: 1) concurrent chemotherapy (cisplatin) plus RT followed by adjuvant cisplatin/5-FU; and 2) concurrent chemotherapy (cisplatin) plus RT alone (ie, without adjuvant chemotherapy) (see the NCCN Guidelines for Cancer of the Nasopharynx). 304,317,318 If using adjuvant chemotherapy, adjuvant carboplatin/5-FU is also an option; however, this recommendation was revised to category 2B for the 2014 update because there is less experience using carboplatin in this setting and because the recent Chen et al study suggests that it is reasonable not to use adjuvant chemotherapy (see Principles of Systemic Therapy in the NCCN Guidelines for Head and Neck Cancers). 318,319 The panel is interested in further follow-up to the Chen et al study to clarify the role of adjuvant chemotherapy in this setting.³¹⁸

Induction chemotherapy (category 3) (followed by chemotherapy/RT) is also recommended for patients with nasopharyngeal cancer with either T1, N1–3 or T2–T4, any N lesions (see the NCCN Guidelines for Cancer of the Nasopharynx). Panel members had widespread disagreement regarding whether induction chemotherapy is appropriate, which is reflected in the category 3 recommendation (see *The Induction Chemotherapy Controversy* in this Discussion). Several

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

induction/sequential chemotherapy options are recommended in the algorithm for nasopharyngeal cancer (see *Principles of Systemic Therapy* in the NCCN Guidelines for Head and Neck Cancers). For the 2014 update, docetaxel/cisplatin (category 2B) was added as an option. Although an unusual occurrence, a patient with residual disease in the neck and a complete response at the primary should undergo a neck dissection.

For patients who present with metastatic disease, recommended initial therapy includes either a platinum-based combination chemotherapy regimen or concurrent chemotherapy/RT; treatment depends on whether disease is localized or widespread (see NCCN Guidelines for Cancer of the Nasopharynx). 304,317,319 For platinum-based combination chemotherapy, the different options are listed in the algorithm (see *Principles of Systemic Therapy* in the NCCN Guidelines for Head and Neck Cancers). 303,320

The management of patients with recurrent or persistent nasopharyngeal cancer is described in the algorithm (see NCCN Guidelines for Cancer of the Nasopharynx). Unless otherwise specified, regimens or single agents can be used for either nasopharyngeal or non-nasopharyngeal cancer (see *Principles of Systemic Therapy* in the NCCN Guidelines for Head and Neck Cancers). Combination therapy options include: 1) cisplatin or carboplatin with docetaxel or paclitaxel; 2) cisplatin/5-FU; or 3) cetuximab/carboplatin.³²² For those who have failed platinum-based therapy, options are listed in the algorithm (see *Principles of Systemic Therapy* in the NCCN Guidelines for Head and Neck Cancers).^{323,324}

Follow-up/Surveillance

Recommendations for surveillance are provided in the algorithm (see *Follow-up Recommendations* in the NCCN Guidelines for Head and Neck Cancers).

Cancer of the Larynx

The larynx is divided into 3 regions: supraglottis, glottis, and subglottis. The distribution of cancers is as follows: 30% to 35% in the supraglottic region, 60% to 65% in the glottic region, and 5% in the subglottic region. The incidence and pattern of metastatic spread to regional nodes vary with the primary region. More than 50% of patients with supraglottic primaries present with spread to regional nodes because of an abundant lymphatic network that crosses the midline. Bilateral adenopathy is not uncommon with early-stage supraglottic primaries. Thus, supraglottic cancer is often locally advanced at diagnosis. In contrast, the lymphatic drainage of the glottis is sparse and early-stage primaries rarely spread to regional nodes. Because hoarseness is an early symptom, most glottic cancer is early stage at diagnosis. Thus, glottic cancer has an excellent cure rate of 80% to 90%. Nodal involvement adversely affects survival rates.

Workup and Staging

The evaluation of the patient to determine tumor stage is similar for glottic and supraglottic primaries (see *Cancer of the Glottic Larynx* and *Cancer of the Supraglottic Larynx* in the NCCN Guidelines for Head and Neck Cancers). Multidisciplinary consultation is critical for both sites because of the potential for loss of speech and, in some instances, for swallowing dysfunction (see *Principles of Nutrition: Management and Supportive Care* in the NCCN Guidelines for Head and Neck Cancers). The 2010 AJCC staging classification (7th edition) for laryngeal primary

NCCN Guidelines Index Head and Neck Table of Contents Discussion

tumors is determined by the number of subsites involved, vocal cord mobility, and the presence of metastases (see Table 3).¹⁶

Treatment

In the NCCN Guidelines, the treatment of patients with laryngeal cancer is divided into 2 categories: 1) tumors of the glottic larynx; or 2) tumors of the supraglottic larynx. Subglottic cancer is not discussed, because it is so uncommon. For the 2104 update, extensive revisions were made to the radiation guidelines (see *Principles of Radiology* in the NCCN Guidelines for Cancer of the Glottic Larynx and for Cancer of the Supraglottic Larynx).

For patients with carcinoma in situ of the larynx, recommended treatment options include 1) endoscopic removal (ie, stripping, laser) which is preferred; or 2) RT. 325,326 For early-stage glottic or supraglottic cancer, surgery (partial laryngectomy) or RT have similar effectiveness (see Cancer of the Glottic Larynx and Cancer of the Supraglottic Larynx in the NCCN Guidelines for Head and Neck Cancers). 327 The choice of treatment modality depends on anticipated functional outcome, the patient's wishes, reliability of follow-up, and general medical condition. Adjuvant treatment depends on the presence (or absence) of adverse features. Based on the recent update of RTOG 95-01, the panel deleted the recommendation for *consider [adjuvant] chemotherapy/RT* for patients with T2, NO glottic cancer with either other risk features or positive margins. 79 The long-term update of RTOG 95-01 reported that locoregional control and disease-free survival were not improved with the addition of adjuvant chemotherapy/RT when compared with RT alone in patients with 2 or more involved lymph nodes. However, an unplanned subgroup analysis did show improvement in locoregional control and disease-free survival in patients with extracapsular spread and/or positive margins.

Resectable, advanced-stage glottic and supraglottic primaries are usually managed with a combined modality approach (see *Cancer of the Glottic Larynx* and *Cancer of the Supraglottic Larynx* in the NCCN Guidelines for Head and Neck Cancers). If treated with primary surgery, total laryngectomy is usually indicated, although selected cases can be managed with conservation surgical techniques that preserve vocal function. Pulmonary function tests should be considered before surgery.

If total laryngectomy is indicated but laryngeal preservation is desired, concurrent systemic therapy/RT is recommended. 278,293 When using systemic therapy/RT, high-dose cisplatin (category 1) is preferred (at 100 mg/m² on days 1, 22, and 43).²⁷⁸ Induction chemotherapy with management based on response is an option (either category 2A or 2B, depending on the setting) for all but T1-2, N0 glottic cancer. Based on the long-term update of RTOG 91-11, panel members added an option for the use of induction chemotherapy when patients require (are amenable to) total laryngectomy (see *The Induction Chemotherapy* Controversy in this Discussion).²⁷⁸ The panel revised the recommendations for the use of induction chemotherapy from category 3 to category 2A for T3, N2-3 when patients require total laryngectomy (see The Induction Chemotherapy Controversy in this Discussion and the NCCN Guidelines for Cancer of the Glottic Larynx and Cancer of Supraglottic Larynx).²⁷⁸ Definitive RT (without chemotherapy) is an option for patients with T3, N0-1 disease who are medically unfit or refuse chemotherapy (see Cancer of the Glottic Larynx and Cancer of the Supraglottic Larynx in the NCCN Guidelines for Head and Neck Cancers). Surgery is reserved for managing the neck as indicated, for those patients whose disease persists after chemotherapy/RT or RT, or for those patients who develop a subsequent locoregional recurrence (see Post-chemoradiation or RT Neck Evaluation in Principles of Surgery in the NCCN Guidelines for Head and Neck Cancers).

NCCN Guidelines Index Head and Neck Table of Contents Discussion

The NCCN recommendations for managing locally advanced, resectable glottic and supraglottic cancers (in which total laryngectomy is indicated but laryngeal preservation is desired) with concurrent cisplatin and radiation are based on Intergroup trial R91-11. Per Before 2002, either induction chemotherapy with cisplatin/5-FU followed by RT (based on the VA Laryngeal Cancer Study Group trial Per Order (without chemotherapy) were the standard of care options recommended in the NCCN Guidelines for Head and Neck Cancers. However, concurrent RT and systemic therapy (eg, cisplatin 100 mg/m² preferred [category 1]) is now the recommended option for achieving laryngeal preservation.

R91-11 was a successor trial to the VA trial and compared 3 non-surgical regimens: 1) induction cisplatin/5-FU followed by RT (control arm and identical to that in the VA trial); 2) concurrent RT and high-dose cisplatin 100 mg/m² days 1, 22, and 43; and 3) RT alone. RT was uniform in all 3 arms (70 Gy/7 weeks, 2 Gy/fraction), as was the option of surgery (including total laryngectomy) to salvage treatment failures in all arms. Patients with stage III and IV (M0) disease were eligible, excluding T1 primaries and high-volume T4 primaries (tumor extending more than 1 cm into the base of the tongue or tumor penetrating through cartilage). The key findings of the R91-11 trial were: 1) a statistically significant higher 2-year laryngeal preservation (local control) rate of 88% for concurrent RT with cisplatin, compared to 74% for induction chemotherapy and 69% for RT alone; 2) no significant difference in laryngeal preservation between induction and RT alone treatments; and 3) similar survival for all treatment groups. These R91-11 results changed the standard of care to concurrent RT and systemic therapy (cisplatin preferred [category 1]) for achieving laryngeal preservation for T3, N0 and T4a, N0 supraglottic cancers and for most T3, any N glottic cancers. 293 Recent long-term follow-up (10

years) of R91-11 indicates that laryngeal preservation continues to be better (ie, statistically different) with concurrent cisplatin/RT when compared with either induction chemotherapy or RT alone.²⁷⁸ Overall survival was not statistically different for all treatment groups; there was more non-cancer–related mortality among patients treated with concurrent cisplatin/RT.

For patients with glottic and supraglottic T4a tumors, the standard approach is total laryngectomy with thyroidectomy and neck dissection as indicated (depending on node involvement) followed by adjuvant treatment (see *Cancer of the Glottic Larynx, Cancer of the Supraglottic Larynx*, and *Principles of Surgery* in the NCCN Guidelines for Head and Neck Cancers). For patients with glottic T4a larynx cancer, postoperative observation is an option for highly selected patients with good-risk features (eg, indolent histopathology). For selected patients with T4a tumors who decline surgery, the NCCN Panel recommends: 1) considering concurrent chemoradiation; 2) clinical trials; or 3) induction chemotherapy with additional management based on response.^{278,293}

Follow-up/Surveillance

Recommendations for surveillance are provided in the algorithm (see *Follow-up Recommendations* in the NCCN Guidelines for Head and Neck Cancers). Follow-up examinations in many of these patients may need to be supplemented with serial endoscopy or high-resolution, advanced radiologic imaging techniques because of the scarring, edema, and fibrosis that occur in the laryngeal tissues and neck after high-dose radiation.

Paranasal Tumors (Maxillary and Ethmoid Sinus Tumors)

Tumors of the paranasal sinuses are rare, and patients are often asymptomatic until late in the course of their disease. Tumors of the

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

maxillary sinus are more common than those of the ethmoid sinus or nasal cavity. ¹⁶ Note that the workup for patients with suspected paranasal sinus tumors includes a complete H&N CT with contrast and/MRI; dental/prosthetic consultation is recommended if clinically indicated. A new section on *Principles of Dental Evaluation and Management* was added for the 2014 update (see this Discussion and the NCCN Guidelines for Head and Neck Cancers).

Although the most common histology for these tumors is squamous cell carcinoma, multiple histologies have been reported including adenocarcinoma, esthesioneuroblastoma (also known as olfactory neuroblastoma), minor salivary gland tumors, and undifferentiated carcinoma (eg, sinonasal undifferentiated carcinoma [SNUC], small cell neuroendocrine). Locoregional control and incidence of distant metastasis are dependent on T stage, N stage, and tumor histology. However, T stage remains the most reliable predictor of survival and local regional control (see Table 4). Mucosal melanoma (MM) also occurs in the paranasal sinus region, nasal cavity, and oral cavity (see *Mucosal Melanoma of the Head and Neck* in this Discussion and the NCCN Guidelines for Mucosal Melanoma). Biopsy results may also indicate that patients have sarcoma or lymphoma (see the NCCN Guidelines for Soft Tissue Sarcoma and Non-Hodgkin's Lymphoma). 333,334

Ethmoid Sinus Tumors

Patients with early-stage ethmoid sinus cancer are typically asymptomatic. These neoplasms are often found after a routine nasal polypectomy or during the course of a nasal endoscopic procedure. For a patient with gross residual disease who has had a nasal endoscopic surgical procedure, the preferred treatment is complete surgical resection of the residual tumor. This procedure often entails an anterior

craniofacial resection to remove the cribriform plate and to ensure clear surgical margins. PET/CT may be considered in the workup of patients with clinically apparent stage III or IV disease.

Most patients with ethmoid sinus cancer present after having had an incomplete resection. The patient who is diagnosed after incomplete resection (eg, polypectomy)—and has no documented residual disease on physical examination, imaging, and/or endoscopy—should be treated with surgical resection if feasible (see the NCCN Guidelines for Ethmoid Sinus Tumors). If no adverse pathologic factors are found, this treatment may obviate the need for postoperative RT in T1 patients only (category 2B). However, RT may be used as definitive treatment in patients if pre-biopsy imaging studies and nasal endoscopy show that the superior extent of the disease does not involve the skull base. Note that extensive revisions were made to the radiation guidelines (see *Principles of Radiology* in the NCCN Guidelines for Ethmoid Sinus Tumors; see also *Head and Neck Radiation Therapy* in this Discussion).

Systemic therapy should be part of the overall treatment for patients with SNUC or small cell neuroendocrine histologies. 335-344 Surgery and RT have been used to treat patients with esthesioneuroblastomas; chemotherapy has also been incorporated into the local/regional treatment. 343-350 Long-term follow-up is necessary for esthesioneuroblastomas, because recurrence can even occur after 15 years. 343,351,352

Maxillary Sinus Tumors

Surgical resection for all T stages (except T4b, any N) followed by postoperative therapy remains a cornerstone of treatment for maxillary sinus tumors (see the NCCN Guidelines for Maxillary Sinus Tumors). However, definitive RT or chemotherapy/RT is recommended for T4b, any N, although this is a category 2B

NCCN Guidelines Index Head and Neck Table of Contents Discussion

recommendation for patients with T3-4a, N0 disease.³⁵⁷ Recent studies using IMRT have shown that it reduces the incidence of complications, such as radiation-induced ophthalmologic toxicity; however, the 5-year overall survival rate has not improved.^{154,355,358-361} Extensive revisions were made to the radiation guidelines (see *Principles of Radiology* in the NCCN Guidelines for Maxillary Sinus Tumors; see also *Head and Neck Radiation Therapy* in this Discussion). Participation in clinical trials is recommended for patients with malignant tumors of the paranasal sinuses.

Follow-up

Recommendations for surveillance are provided in the algorithm (see *Follow-up Recommendations* in the NCCN Guidelines for Head and Neck Cancers).

Very Advanced Head and Neck Cancers

Very advanced H&N cancers include: 1) newly diagnosed locally advanced T4b (M0); 2) newly diagnosed unresectable nodal disease; 3) metastatic disease; 4) recurrent or persistent disease; or 5) patients unfit for surgery. The treatment goal is cure for patients with newly diagnosed but unresectable disease (see comments about unresectable disease in the section on Head and Neck Surgery in this Discussion). For the recurrent disease group, the goal is cure (if surgery or radiation remains feasible) or palliation (if the patient has received previous RT and the disease is unresectable). For patients with metastatic disease, the goal is palliation or prolongation of life.

Treatment

Participation in clinical trials is preferred for all patients with very advanced H&N cancers. For the 2014 update, extensive revisions were made to the radiation guidelines (see *Principles of Radiology* in the

NCCN Guidelines for Very Advanced Head and Neck Cancers; see also *Head and Neck Radiation Therapy* in this Discussion).

Newly Diagnosed Advanced Disease

For patients with a PS of 0 or 1, the standard treatment of newly diagnosed, very advanced disease is concurrent systemic therapy and RT (with high-dose cisplatin as the preferred [category 1] systemic agent). Other category 1 options include: 1) carboplatin/5-FU, or 2) cetuximab. Other systemic therapy/RT options are listed in the guidelines (see *Principles of Systemic Therapy* in the NCCN Guidelines for Head and Neck Cancers). The NCCN Panel had a major disagreement regarding whether induction chemotherapy (eg, TPF) followed by RT or chemoradiation should be used for patients with a PS of 0 or 1, which is reflected in the category 3 recommendation (see also *The Induction Chemotherapy Controversy* in this Discussion). Other options for patients with PS 2–3 are described in the algorithm (see the NCCN Guidelines for Very Advanced Head and Neck Cancers).

Many randomized trials^{81,122,123,282-288} and meta-analyses of clinical trials^{273,289-292} show significantly improved overall survival, disease-free survival, and local control when a concomitant or alternating chemotherapy and radiation regimen is compared with RT alone for advanced disease. All combined chemoradiotherapy regimens are associated with mucosal toxicities, which require close monitoring of patients, ideally by a team experienced in treating patients with H&N cancers. Limited data are available comparing the efficacy of different chemoradiotherapy regimens. High-dose cisplatin plus RT is effective and relatively easy to administer and typically uses conventional fractionation at 2.0 Gy per fraction to 70 Gy or more in 7 weeks with single-agent cisplatin given every 3 weeks at 100 mg/m² (see *Principles*

NCCN Guidelines Index Head and Neck Table of Contents Discussion

of Radiation Therapy in the NCCN Guidelines for Very Advanced Head and Neck Cancers). 282

Bonner et al randomly assigned 424 patients with locally advanced and measurable stage III to IV squamous cell carcinomas of the H&N to receive definitive RT with or without cetuximab. Locoregional control and median overall survival (49 months vs. 29.3 months, P = .03) were significantly improved in patients treated with RT and cetuximab compared to RT alone. RT and cetuximab may provide a therapeutic option for patients not considered medically fit for standard chemoradiotherapy regimens. Other chemoradiation options (eg, carboplatin/5-FU [category 1]) are also recommended by the NCCN Panel (see *Principles of Chemotherapy* in the NCCN Guidelines for Head and Neck Cancers). Linited data are available comparing combination chemoradiation versus using a single agent concurrently with RT.

Recurrent or Persistent Disease

Surgery is recommended for resectable recurrent or persistent locoregional disease; adjuvant therapy depends on the risk factors (see the NCCN Guidelines for Very Advanced Head and Neck Cancers). If the recurrence is unresectable and the patient did not have prior RT, then RT with concurrent systemic therapy is recommended, depending on the PS (see the NCCN Guidelines for Very Advanced Head and Neck Cancers). For patients with recurrent disease who are not amenable to curative-intent radiation or surgery, the treatment approach is the same as that for patients with metastatic disease; enrollment in a clinical trial is preferred. Note that the *Principles of Radiation Therapy* were extensively revised for patients with very advanced H&N cancers (see the NCCN Guidelines for Head and Neck Cancers; see also *Head and Neck Radiation Therapy* in this Discussion).

Metastatic Disease

Palliative adjunctive measures include RT to areas of symptomatic disease, analgesics, and other measures to control other manifestations of disease spread (eg, hypercalcemia). Single agents and combination systemic chemotherapy regimens are both used (see Principles of Chemotherapy in the NCCN Guidelines for Head and Neck Cancers). 366 Unless otherwise specified, regimens or single agents can be used for either nasopharyngeal or non-nasopharyngeal cancer (see Principles of Systemic Therapy in the NCCN Guidelines for Head and Neck Cancers). Response rates to single agents range from 15% to 35%. 247,367,368 Active and more commonly used single agents include cisplatin, carboplatin, paclitaxel, docetaxel, 5-FU, methotrexate, capecitabine, cetuximab (for non-nasopharyngeal cancer), gemcitabine (for nasopharyngeal cancer), and vinorelbine (for non-nasopharyngeal cancer). ^{247,324,366,369-385} For the 2014 update, the panel revised the recommendations to category 2B for both ifosfamide and bleomycin because these agents are less commonly used; previously these agents had a category 2A recommendation.

Active combination regimens include: 1) cisplatin or carboplatin, plus 5-FU with cetuximab (for non-nasopharyngeal cancer only) (category 1);³⁸⁶ 2) cisplatin or carboplatin, plus a taxane;^{387,388} 3) cisplatin with cetuximab (for non-nasopharyngeal cancer only);³⁷⁰ or 4) cisplatin with 5-FU.^{375,388} These combination regimens, on average, result in a doubling of response rates compared to single agents. Regimens for metastatic nasopharyngeal cancer are described in a previous section (see *Cancer of the Nasopharynx* in this Discussion). Randomized trials assessing a cisplatin-based combination regimen (such as cisplatin plus 5-FU) versus single-agent therapy with cisplatin, 5-FU, or methotrexate have shown significantly higher response rates, but no difference in overall survival, for the combination regimen.^{369,375,388-390} Historically, the

NCCN Guidelines Index Head and Neck Table of Contents Discussion

median survival with chemotherapy is approximately 6 months, and the 1-year survival rate is approximately 20%. Complete response is associated with longer survival and, although infrequent, has been reported more often with combination regimens.³⁷⁵ A randomized phase III trial in patients with metastatic or recurrent H&N cancers found no significant difference in survival when comparing cisplatin plus 5-FU with cisplatin plus paclitaxel.³⁸⁸ Activation of epidermal growth factor receptor (EGFR) triggers a cascade of downstream intracellular signaling events important for regulation of epithelial cell growth. Overexpression of EGFR and/or common ligands has been observed in greater than 90% of squamous cell carcinomas of the H&N. This finding has led to the development of EGFR inhibitors, such as the monoclonal antibody cetuximab and small molecule tyrosine kinase inhibitors (TKIs) (ie, erlotinib, gefitinib).

Data from phase II studies indicate that in the cisplatin-refractory setting, the single-agent response rate of cetuximab is about 12% to 14%. Burtness et al³⁷⁰ compared cisplatin plus cetuximab versus cisplatin plus placebo as first-line treatment of recurrent disease; they reported a significant improvement in response rate with cetuximab (26% vs. 10%, respectively). A phase III randomized trial (EXTREME) of 442 patients with recurrent or metastatic squamous cell carcinoma found that cetuximab plus cisplatin/5-FU or carboplatin/5-FU improved median survival when compared to the standard chemotherapy doublet (10.1 vs. 7.4 months, P = .04). The response rate was also improved with cetuximab (36% vs. 20% [P < .001]). In one randomized trial, treatment with 2 different dosing schedules of gefitinib offered no survival advantage compared to treatment with methotrexate. 374 Available data for novel agents have not established them as treatment options for recurrent or metastatic H&N cancers outside of a clinical trial. 391,392

For the 2014 update, the NCCN Panel added 3 new combination regimens for recurrent, unresectable, or metastatic disease: 1) cisplatin/docetaxel/cetuximab (for non-nasopharyngeal cancer);³⁹³ 2) cisplatin/paclitaxel/cetuximab (for non-nasopharyngeal cancer);^{247,394} and 3) cisplatin/gemcitabine (for nasopharyngeal cancer). ³⁹⁵ For the cisplatin/docetaxel/cetuximab regimen, the median PFS was 7.1 months and overall survival was 15.3 months; 1-year overall survival was 58.6%. This newer taxane-based regimen has impressive overall survival and is an option for patients with good PS. However, the standard of care for recurrent, unresectable, or metastatic non-nasopharyngeal cancer is considered to be the regimen from the EXTREME trial of cetuximab plus cisplatin/5-FU or carboplatin/5-FU (category 1).³⁸⁶ A recent trial compared 5 different cisplatin-based regimens for nasopharyngeal cancer and reported that a cisplatin/gemcitabine regimen was effective although not better than either cisplatin/5-FU or cisplatin/paclitaxel.³⁹⁵

The standard treatment of patients with incurable, persistent, recurrent, or metastatic H&N cancers should be dictated, in large part, by the patient's PS (see the NCCN Guidelines for Very Advanced Head and Neck Cancers). Patients should be fully informed about the goals of treatment, cost of combination chemotherapy, and potential for added toxicity.

Occult Primary Cancer

When patients present with metastatic tumor in a neck node and no primary site can be identified after appropriate investigation, the tumor is defined as an *occult* or unknown primary cancer; this is an uncommon disease, accounting for about 5% of patients presenting to referral centers. Although patients with very small tonsil and tongue base cancers frequently present with enlarged neck nodes and are

NCCN Guidelines Index Head and Neck Table of Contents Discussion

initially classified as an unknown primary, most will eventually be diagnosed by directed biopsy and tonsillectomy. H&N cancer of unknown primary site is a highly curable disease. After appropriate evaluation and treatment, most patients experience low morbidity and many will be cured. The primary tumor becomes apparent on follow-up only in a few cases. Patients and oncologists are often concerned when the primary cancer cannot be found. This concern may lead to intensive, fruitless, and costly diagnostic maneuvers.

Most patients older than 40 years who present with a neck mass prove to have metastatic cancer. The source of the lymphadenopathy is almost always discovered in the course of a complete H&N examination, which should be performed on all patients with neck masses before other studies are initiated. The following should be assessed during office evaluation: 1) risk factors (eg, tobacco or alcohol use); 2) antecedent history of malignancy; and 3) prior resection, destruction, or regression of cutaneous lesions.

Workup

Patients with a neck mass should have a complete H&N examination. FNA is preferred (over open biopsy), which generally guides management and treatment planning. Unless FNA is inconclusive, core or open biopsy should be avoided because it may alter or interfere with subsequent treatment. Open biopsy should not be performed unless the patient is prepared for definitive surgical management of the malignancy as indicated, if documented in the operating room. This management may entail a formal neck dissection. Therefore, an open biopsy of an undiagnosed neck mass should not be undertaken lightly, and patients should be apprised of treatment decisions and related sequelae.

When a needle biopsy shows squamous cell carcinoma, adenocarcinoma, or anaplastic/undifferentiated epithelial cancer and no

primary site has been found, additional studies are needed (see Occult Primary in the NCCN Guidelines for Head and Neck Cancers). A PET/CT scan should only be done (before biopsy) if other tests do not reveal a primary. HPV-16 and Epstein Barr Virus (EBV) testing are suggested for squamous cell or undifferentiated histology. 324,396-399 HPV testing can be useful in workup and management of cancers of the neck of unknown primary. An HPV-positive test strongly suggests an occult primary is located in the tonsil or base of tongue regions, permitting one to customize radiation targets to these mucosal regions.²⁶⁵

When the imaging studies and a complete H&N examination do not reveal a primary tumor, then an examination under anesthesia should be performed. Mucosal sites should be inspected and examined. Appropriate endoscopies with directed biopsies of likely primary sites are recommended, but they seldom disclose a primary cancer. Many primary cancers are identified after tonsillectomy. However, the therapeutic benefit of this surgery is uncertain, because when patients have been treated without tonsillectomy, only a few develop a clinically significant primary tumor.

Treatment

Neck dissection is recommended for all patients with thyroglobulin-negative and calcitonin-negative adenocarcinoma (see Occult Primary in the NCCN Guidelines for Head and Neck Cancers). If the metastatic adenocarcinoma presents high in the neck, parotidectomy may be included with the neck dissection. After neck dissection, management depends on the findings (ie, N1 without extracapsular spread, N2 or N3 without extracapsular spread, or extracapsular spread) (see Occult Primary in the NCCN Guidelines for Head and Neck Cancers).

NCCN Guidelines Index Head and Neck Table of Contents Discussion

Among NCCN Member Institutions, significant variation exists regarding the management of squamous cell carcinoma, poorly differentiated or nonkeratinizing squamous cell carcinoma, anaplastic cancer (not thyroid) of unknown primary site, or other uncommon histologies. Most panel members believe such patients should be managed with surgery (which is preferred for <N2 disease) and neck dissection (levels I–V) followed by RT or chemotherapy/RT. The following options are also recommended: 1) chemoradiation for those with N2 or greater disease (category 2B); 2) primary RT for those with less than N2 disease (category 2B); or 3) induction chemotherapy (category 3) followed by chemoradiation or RT (see *Occult Primary* in the NCCN Guidelines for Head and Neck Cancers). A neck dissection may be recommended after treatment, depending on the clinical response.

After a neck dissection, recommendations vary depending on the amount of nodal disease and the presence or absence of extracapsular spread. For N1 disease without extracapsular spread, NCCN Member Institutions recommend either: 1) radiation that encompasses the target volume; or 2) careful observation with regular H&N examinations (see Occult Primary in the NCCN Guidelines for Head and Neck Cancers). Postoperative radiation or considering concurrent chemoradiation (category 2B for chemoradiation) is recommended for N2 or N3 disease without extracapsular spread (see Occult Primary in the NCCN Guidelines for Head and Neck Cancers). For extracapsular spread, concurrent chemoradiation is a category 1 recommendation; RT alone is an option (see Occult Primary in the NCCN Guidelines for Head and Neck Cancers). 77,78 Note that the *Principles of Radiation Therapy* were extensively revised for this site (see Occult Primary in the NCCN Guidelines for Head and Neck Cancers; see also Head and Neck Radiation Therapy in this Discussion).

Salivary Gland Tumors

Salivary gland tumors can arise in the major salivary glands (ie, parotid, submandibular, sublingual) or in one of the minor salivary glands, which are widely spread throughout the aerodigestive tract. 400 Many minor salivary gland tumors are located on the hard palate. Approximately 20% of the parotid gland tumors are malignant; the incidence of malignancy in submandibular and minor salivary gland tumors is approximately 50% and 80%, respectively. These malignant tumors constitute a broad spectrum of histologic types, including mucoepidermoid, acinic, adenocarcinoma, adenoid cystic carcinoma, malignant myoepithelial tumors, and squamous carcinoma. The primary diagnosis of squamous carcinoma of the parotid gland is rare; however, the parotid is a frequent site of metastasis from skin cancer. 401 Prognosis and tendency to metastasize vary among these histologic types. Major prognostic factors are histologic grade, tumor size, and local invasion. Staging is done using the AJCC Cancer Staging Manual (7th edition) (see Table 5).¹⁶

Treatment

The major therapeutic approach for salivary gland tumors is adequate and appropriate surgical resection. Surgical intervention requires careful planning and execution, particularly in parotid tumor surgery because the facial nerve is in the gland, which should be preserved if the nerve is not directly involved by the tumor. Most parotid gland tumors are located in the superficial lobe, and if the facial nerve is functioning preoperatively, the nerve can be preserved in most patients. The facial nerve should be sacrificed if there is preoperative facial nerve involvement with facial palsy or if there is direct invasion of the tumor into the nerve where the tumor cannot be separated from the nerve. Malignant deep lobe parotid tumors are quite rare; however, they are generally a challenge for the surgeon because the patient may

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

require superficial parotidectomy and identification and retraction of the facial nerve to remove the deep lobe parotid tumor.

Most malignant deep lobe parotid tumors will require postoperative RT because of adverse features such as the limitations of surgical margins in the resection of these tumors (see the NCCN Guidelines for Salivary Gland Tumors). 402,404,407 RT is also used in an adjuvant setting for tumors with other adverse features (eg, intermediate, high grade);⁴⁰³ chemotherapy/RT (category 2B) can also be considered (see the NCCN Guidelines for Salivary Gland Tumors). 408 Efficacy data for chemotherapy/RT in this setting are limited. Extensive safety data are available from the management of squamous cell H&N cancers. With regard to unresectable salivary gland tumors, the NCCN Panel had less consensus about chemoradiation (which is reflected in the category 2B recommendations), because there are few published trials. However, data support the use of neutron therapy. 409 Chemotherapy may be used for palliation in advanced disease. Various agents alone or in combination (eg., cisplatin, cyclophosphamide, doxorubicin; epirubicin; mitoxantrone; carboplatin and vinorelbine) have been shown in small series to be active for some salivary gland malignant histologies. 410-417 Although targeted therapy is associated with stable disease, it is minimally active and not recommended outside of clinical trials. 414,418

Follow-up

Recommendations for surveillance are in the algorithm (see *Follow-up Recommendations* in the NCCN Guidelines for Head and Neck Cancers).

Mucosal Melanoma of the Head and Neck

MM is a rare but highly aggressive neoplasm with a poor prognosis. 419,420 It mainly occurs throughout the upper aerodigestive

tract. 421 Most MM (70%–80%) occurs in the nasal cavity or paranasal sinus region, and most of the remainder develops in the oral cavity. 422 The incidence of nasal cavity MM appears to be increasing. 419 Sinonasal MM is typically confined to the primary site at presentation. 423 Oral cavity MM more frequently presents with clinically apparent lymph node metastasis. 424 No etiologic risk factors are yet apparent.

Workup and Staging

Workup for MM should include clinical examination and CT and/or MRI for paranasal sinus disease and appropriate imaging for other mucosal sites. PET-CT scanning may be considered to define distant disease in more advanced situations. The AJCC Cancer Staging Manual (7th edition) includes a staging system for MM (see Table 6). The AJCC staging recognizes 2 key factors specific to MM: 1) the poor prognosis of MM even with a limited primary burden of disease; and 2) there is still some gradation of survival based on the burden of disease as reflected in local, regional, and distant extent. Thus, the AJCC staging system for MM begins with stage III disease as the most limited form of disease (similar to anaplastic thyroid carcinoma), and the stages reflect the local burden of disease, as well as regional and distant extent. In addition, the AJCC staging system reflects the fact that MM occurs at all mucosal sites in the H&N. Therefore, rules for classifying, staging, and surgical principles should be based on the appropriate anatomic site of origin.

Treatment

Although limited data exist on treatment options, primary treatment should be surgical for stage III to IVA disease; however, surgery is not recommended for stage IVB to C disease. 425 Adjuvant radiation appears effective in improving local control and survival in most case series. 426-428 Postoperative radiation is clearly indicated in more advanced cases. 429 The role of radiation in stage III disease is not clear, but it can be

NCCN Guidelines Index Head and Neck Table of Contents Discussion

considered on an individual basis by the treating clinicians. NCCN strongly encourages clinical trials for all patients with MM to better define treatment choices at all stages of the disease.

Neck dissection and postoperative radiation are recommended for clinical nodal disease. The role of elective neck treatment is unclear. The extension of elective treatment to the neck seems unwarranted in most cases of N0 paranasal sinus MM (see the NCCN Guidelines for Mucosal Melanoma). However, for oral cavity disease, the likelihood of positive disease is significantly higher and the treatment can be better localized to the ipsilateral neck with both surgery and radiation (see the NCCN Guidelines for Mucosal Melanoma). Therefore, elective treatment to the neck for oral cavity MM appears justifiable.

Radiation Therapy

The role of RT in MM has not been evaluated in prospective trials. However, recently reported results of a randomized trial in cutaneous melanoma are considered relevant to MM in the postoperative setting after neck dissection (see third paragraph in this section). Retrospective studies in MM have shown local recurrence to be common after surgery alone. After using postoperative radiation, lower rates of local and neck recurrence have been seen in historical comparison series. Reasonable local control outcomes using RT alone in unresectable or medically inoperable cases have been reported in small cohort series of MMs.

For the 2014 update, the RT recommendations for Mucosal Melanoma were extensively revised by using the same terminology as the other sites for H&N cancer (see *Principles of Radiation Therapy for Mucosal Melanoma* in the NCCN Guidelines for Head and Neck Cancers). RT is often recommended in the postoperative management of MMs. Primary

size or thickness is not used as a risk factor when considering RT to the primary site; all invasive primaries are considered at high risk for local recurrence. For sinonasal primary sites, target volumes may include the primary site without elective treatment of the neck (see the NCCN Guidelines for Mucosal Melanoma). Because oral cavity primary sites are felt to be at a higher risk for failure in the neck, elective management with neck dissection and RT may be applied (see the NCCN Guidelines for Mucosal Melanoma).

Indications for postoperative radiation to the neck are generally extrapolated from cutaneous melanoma. Recently, an Australian-New Zealand consortium reported on a randomized trial (250 patients) of postoperative RT versus observation in patients with palpable adenopathy from cutaneous primaries. Postoperative RT was associated with a significant reduction in relapse in the nodal basin (19% vs. 31%) and a significant improvement in lymph node field control. Only 20 patients relapsed who received RT, whereas 34 patients relapsed who received observation only (P = .04). However, no significant differences in overall survival were reported.

Considering this trial and retrospective studies in MM, the NCCN Panel recommends postoperative RT for the following high-risk features: extracapsular disease, involvement of 2 or more neck or intraparotid nodes, any node 3 cm or greater, neck dissection (alone) with no further basin dissection, or recurrence in the neck or soft tissue after initial surgical resection. 441,442 Conventional fractionation is recommended (at 2 Gy per fraction to a total postoperative dose of 60–66 Gy). The Australian-New Zealand randomized trial used 48 Gy in 20 fractions (240 cGy/fraction) to the neck, axilla, or groin. However, the NCCN Panel prefers conventional fractionation to somewhat higher total doses (60–66 Gy) in the neck because of concerns about late effects from larger dose per fraction, which may not be fully expressed for many

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

years after treatment. For recurrences in the nodal basin after surgery, the following schedules are recommended: 1) 48-50 Gy (2.4-3 Gy/fraction); or 2) 30 Gy (6 Gy/fraction). 432,442

IMRT may be very useful in helping to achieve homogenous dose distributions and to spare critical organs, especially in paranasal sinus sites. ^{154,359,443} Reports suggest that the use of hypofractionation in cutaneous melanomas (which is convenient) is associated with good outcomes but no clear advantage in cancer control. Little experience is available using large dose per fraction in mucosal sites. Because of the close proximity of neural structures and risk of late effects, hypofractionation (if used) must be carefully planned and delivered. ⁴⁴³

Systemic Therapy

Systemic therapy used for cutaneous melanoma (eg, interleukin-2) is recommended for MM (see *Systemic Therapy for Advanced or Metastatic Melanoma* in the NCCN Guidelines for [cutaneous] Melanoma). Historian and interleukin have been used to treat MM. Data suggest that *c-KIT* inhibitors (eg, imatinib) may be useful in selected patients with metastatic MM and specific mutations. Herefore, *c-KIT* inhibitors are reasonable to use in patients with MM who have *c-KIT* mutations (ie, exon 11 or 13 mutations). Although vemurafenib is recommended for patients with cutaneous melanoma who have the V600E mutation of the *BRAF* gene, patients with MM rarely have this mutation.

Follow-up

Recommendations for surveillance are provided in the algorithm (see *Follow-up Recommendations* in the NCCN Guidelines for Head and Neck Cancers). Note that physical examination for MM should include endoscopic inspection for paranasal sinus disease.

Recommended Reading List

Adelstein DJ, Li Y, Adams GL, et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol 2003;21:92-98.

Adelstein DJ, Ridge JA, Gillison ML, et al. Head and neck squamous cell cancer and the human papillomavirus: summary of a National Cancer Institute State of the Science Meeting, November 9-10, 2008, Washington, D.C. Head Neck 2009;31:1393-1422.

Al-Sarraf M, LeBlanc M, Giri PG, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol 1998;16:1310-1317.

Ang KK, Chen A, Curran WJ Jr, et al. Head and neck carcinoma in the United States: first comprehensive report of the Longitudinal Oncology Registry of Head and Neck Carcinoma (LORHAN). Cancer 2012;118:5783-5792.

Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck 2005;27:843-850.

Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 2004;350:1945-1952.

Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 2010;11:21-28.

Bourhis J, Overgaard J, Audry H, et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet 2006;368:843-854.

Bourhis J, Sire C, Graff P, et al. Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02): an open-label phase 3 randomised trial. Lancet Oncol 2012;13:145-153.

Brizel DM, Albers ME, Fisher SR, et al. Hyperfractionated irradiation with or without concurrent chemotherapy for locally advanced head and neck cancer. N Engl J Med 1998;338:1798-1804.

Colevas AD. Chemotherapy options for patients with metastatic or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol 2006;24:2644-2652.

Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 2004;350:1937-1944.

Cooper JS, Zhang Q, Pajak TF, et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2012;84:1198-1205.

DeVita Jr VT, Lawrence TS, Rosenberg SA, eds. DeVita, Hellman, and Rosenberg's Cancer: Principles & Practice of Oncology, 9th edition. Philadelphia: Lippincott Williams & Wilkins; 2011.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

Forastiere AA, Zhang Q, Weber RS, et al. Long-term results of RTOG 91-11: a comparison of three nonsurgical treatment strategies to preserve the larynx in patients with locally advanced larynx cancer. J Clin Oncol 2013;31:845-852.

Fu KK, Pajak TF, Trotti A, et al. A Radiation Therapy Oncology Group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003. Int J Radiat Oncol Biol Phys 2000;48:7-16.

Furniss CS, McClean MD, Smith JF, et al. Human papillomavirus 16 and head and neck squamous cell carcinoma. Int J Cancer 2007;120:2386-2392.

Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000;92:709-720.

Kutler DI, Patel SG, Shah JP. The role of neck dissection following definitive chemoradiation. Oncology (Williston Park) 2004;18:993-998; discussion 999, 1003-1004, 1007.

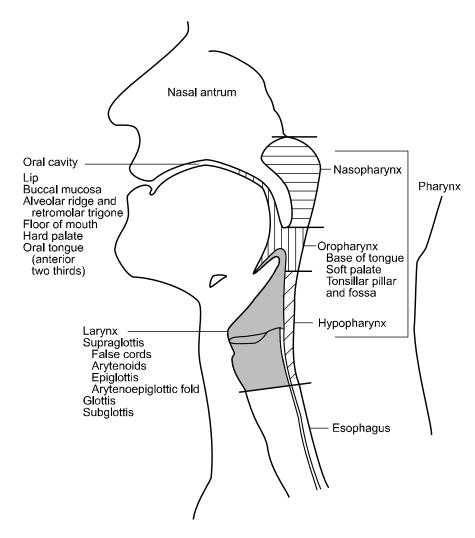
Laurie SA, Ho AL, Fury MG, et al. Systemic therapy in the management of metastatic or locally recurrent adenoid cystic carcinoma of the salivary glands: a systematic review. Lancet Oncol 2011:12:815-824.

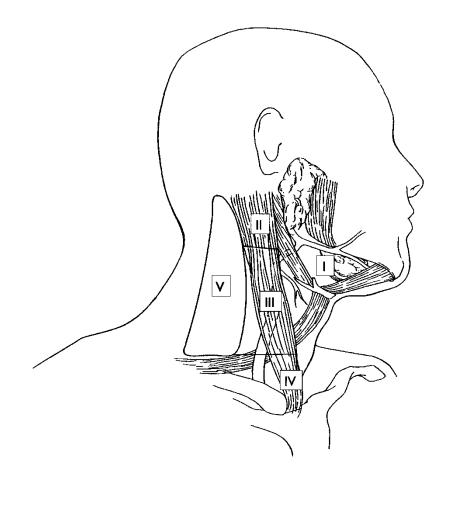
Laurie SA, Licitra L. Systemic therapy in the palliative management of advanced salivary gland cancers. J Clin Oncol 2006:24:2673-2678.

Lefebvre JL, Chevalier D, Luboinski B, Kirkpatrick A, Collette L, Sahmoud T. Larynx preservation in pyriform sinus cancer: preliminary results of a European Organization for Research and Treatment of Cancer phase III trial. EORTC Head and Neck Cancer Cooperative Group. J Natl Cancer Inst 1996;88:890-899.

Piccirillo JF. Importance of comorbidity in head and neck cancer. Laryngoscope 2000:110:593-602.

Pignon JP, Bourhis J, Domenge C, et al on behalf of the MACH-NC Collaborative Group. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: Three meta-analyses of updated individual data. Lancet 2000;355:949-955.


Pignon JP, le Maître A, Maillard E, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol 2009:92:4-14.


Rosenthal DI, Trotti A. Strategies for managing radiation-induced mucositis in head and neck cancer. Semin Radiat Oncol 2009;19:29-34.

Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 2008;359:1116-1127.

Figure 1: Anatomic Sites and Subsites of the Head and Neck

Figure 2: Level Designation for Cervical Lymphatics in the Right Neck

Reprinted with permission, from CMP Healthcare Media. Source: Cancer Management: A Multidisciplinary Approach, 9th ed. Pazdur R, Coia L, Hoskins W, et al (eds), Chapter 4. Copyright 2005, All rights reserved.

Reprinted with permission, from CMP Healthcare Media. Source: Cancer Management: A Multidisciplinary Approach, 9th ed. Pazdur R, Coia L, Hoskins W, et al (eds), Chapter 4. Copyright 2005, All rights reserved.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

References

- 1. Mendenhall WM, Werning JW, Pfister DG. Treatment of head and neck cancer. In: DeVita Jr. VT, Lawrence TS, Rosenberg SA, eds. DeVita, Hellman, and Rosenberg's Cancer: Principles and Practice of Oncology. Philadelphia: Lippincott Williams & Wilkins; 2011.
- 2. DeVita Jr V, Lawrence T, Rosenberg S. DeVita, Hellman, and Rosenberg's Cancer: Principles & Practice of Oncology, 9th edition. Philadelphia: Lippincott Williams & Wilkins; 2011.
- 3. Baxi S, Fury M, Ganly I, et al. Ten years of progress in head and neck cancers. J Natl Compr Canc Netw 2012;10:806-810. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22773796.
- 4. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014;64:9-29. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24399786.
- 5. Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000;92:709-720. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10793107.
- 6. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 2005;14:467-475. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15734974.
- 7. Applebaum KM, Furniss CS, Zeka A, et al. Lack of association of alcohol and tobacco with HPV16-associated head and neck cancer. J Natl Cancer Inst 2007;99:1801-1810. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18042931.
- 8. D'Souza G, Kreimer AR, Viscidi R, et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 2007;356:1944-1956. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17494927.

- 9. Schlecht NF, Burk RD, Adrien L, et al. Gene expression profiles in HPV-infected head and neck cancer. J Pathol 2007;213:283-293. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17893858.
- 10. Sturgis EM, Cinciripini PM. Trends in head and neck cancer incidence in relation to smoking prevalence: an emerging epidemic of human papillomavirus-associated cancers? Cancer 2007;110:1429-1435. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17724670.
- 11. Adelstein DJ, Ridge JA, Gillison ML, et al. Head and neck squamous cell cancer and the human papillomavirus: summary of a National Cancer Institute State of the Science Meeting, November 9-10, 2008, Washington, D.C. Head Neck 2009;31:1393-1422. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19787782.
- 12. Chaturvedi AK, Engels EA, Anderson WF, Gillison ML. Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J Clin Oncol 2008;26:612-619. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18235120.
- 13. Patel SC, Carpenter WR, Tyree S, et al. Increasing incidence of oral tongue squamous cell carcinoma in young white women, age 18 to 44 years. J Clin Oncol 2011;29:1488-1494. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21383286.
- 14. Brown LM, Check DP, Devesa SS. Oral cavity and pharynx cancer incidence trends by subsite in the United States: changing gender patterns. J Oncol 2012;2012:649498. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22577381.
- 15. Saba NF, Goodman M, Ward K, et al. Gender and ethnic disparities in incidence and survival of squamous cell carcinoma of the oral tongue, base of tongue, and tonsils: a surveillance, epidemiology and end results program-based analysis. Oncology 2011;81:12-20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21912193.
- 16. Edge S, Byrd D, Compton C, et al. AJCC Cancer Staging Manual, 7th ed. New York: Springer; 2010.

NCCN Guidelines Index Head and Neck Table of Contents Discussion

- 17. Greene F, Page D, Fleming I, et al. AJCC Cancer Staging Manual, 6th ed. New York: Springer-Verlag; 2002.
- 18. Chaukar DA, Walvekar RR, Das AK, et al. Quality of life in head and neck cancer survivors: a cross-sectional survey. Am J Otolaryngol 2009;30:176-180. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/19410123.

- 19. So WK, Chan RJ, Chan DN, et al. Quality-of-life among head and neck cancer survivors at one year after treatment--a systematic review. Eur J Cancer 2012:48:2391-2408. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22579456.
- 20. Colasanto JM, Prasad P, Nash MA, et al. Nutritional support of patients undergoing radiation therapy for head and neck cancer. Oncology (Williston Park) 2005;19:371-379. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15828552.
- 21. Schnoll RA, Zhang B, Rue M, et al. Brief physician-initiated guitsmoking strategies for clinical oncology settings: a trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol 2003;21:355-365. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12525530.
- 22. Gritz ER, Carr CR, Rapkin D, et al. Predictors of long-term smoking cessation in head and neck cancer patients. Cancer Epidemiol Biomarkers Prev 1993:2:261-270. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8318879.
- 23. Lin BM, Starmer HM, Gourin CG. The relationship between depressive symptoms, quality of life, and swallowing function in head and neck cancer patients 1 year after definitive therapy. Laryngoscope 2012:122:1518-1525. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22467530.

24. Krebber AM, Leemans CR, de Bree R, et al. Stepped care targeting psychological distress in head and neck and lung cancer patients: a randomized clinical trial. BMC Cancer 2012:12:173. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22574757.

25. Verdonck-de Leeuw IM, de Bree R, Keizer AL, et al. Computerized prospective screening for high levels of emotional distress in head and neck cancer patients and referral rate to psychosocial care. Oral Oncol 2009:45:e129-133. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/19362038.

- 26. Andersen BL, DeRubeis RJ, Berman BS, et al. Screening, assessment, and care of anxiety and depressive symptoms in adults with cancer: an american society of clinical oncology guideline adaptation. J Clin Oncol 2014;32:1605-1619. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24733793.
- 27. Feinstein AR. The pre-therapeutic classification of co-morbidity in chronic disease. Journal of Chronic Diseases 1970;23:455-468. Available at: http://www.sciencedirect.com/science/article/B7GH4-4C11F3X-9S/2/93279d36e5705e1516636407be4c3a2f.
- 28. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373-383. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3558716.
- 29. Piccirillo JF. Importance of comorbidity in head and neck cancer. Laryngoscope 2000;110:593-602. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10764003.
- 30. Piccirillo JF, Lacy PD, Basu A, Spitznagel EL. Development of a new head and neck cancer-specific comorbidity index. Arch Otolaryngol Head Neck Surg 2002;128:1172-1179. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12365889.
- 31. Piccirillo JF. Impact of comorbidity and symptoms on the prognosis of patients with oral carcinoma. Arch Otolaryngol Head Neck Surg 2000:126:1086-1088. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10979121.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

- 32. Chen AY, Matson LK, Roberts D, Goepfert H. The significance of comorbidity in advanced laryngeal cancer. Head Neck 2001;23:566-572. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11400245.
- 33. Singh B, Bhaya M, Stern J, et al. Validation of the Charlson comorbidity index in patients with head and neck cancer: a multi-institutional study. Laryngoscope 1997;107:1469-1475. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9369392.
- 34. Hall SF, Rochon PA, Streiner DL, et al. Measuring comorbidity in patients with head and neck cancer. Laryngoscope 2002;112:1988-1996. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12439168.
- 35. Hall SF, Groome PA, Rothwell D. The impact of comorbidity on the survival of patients with squamous cell carcinoma of the head and neck. Head Neck 2000;22:317-322. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10862012.
- 36. Ribeiro KC, Kowalski LP, Latorre MR. Impact of comorbidity, symptoms, and patients' characteristics on the prognosis of oral carcinomas. Arch Otolaryngol Head Neck Surg 2000;126:1079-1085. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10979120.
- 37. de Graeff A, de Leeuw JR, Ros WJ, et al. Pretreatment factors predicting quality of life after treatment for head and neck cancer. Head Neck 2000;22:398-407. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10862025.
- 38. Funk GF, Karnell LH, Whitehead S, et al. Free tissue transfer versus pedicled flap cost in head and neck cancer. Otolaryngol Head Neck Surg 2002;127:205-212. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12297811.
- 39. Farwell DG, Reilly DF, Weymuller EA, et al. Predictors of perioperative complications in head and neck patients. Arch Otolaryngol Head Neck Surg 2002;128:505-511. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12003580.

- 40. Kaplan MH, Feinstein AR. The importance of classifying initial comorbidity in evaluatin the outcome of diabetes mellitus. J Chronic Dis 1974;27:387-404. Available at:
- http://www.ncbi.nlm.nih.gov/pubmed/4436428.
- 41. Bang D, Piccirillo J, Littenberg B, al e. The Adult Comorbidity Evaluation-27 (ACE-27) test: a new comorbidity index for patients with cancer [abstract]. J Clin Oncol 2000. Available at: http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&conflD=2&abstractID=367.
- 42. Piccirillo JF, Costas I, Claybour P, et al. The measurement of comorbidity by cancer registries. Journal of Registry Management 2003;30:8-14. Available at: http://oto2.wustl.edu/clinepi/PDF/Measurement Comorbidity Cancer Registries.pdf.
- 43. Patrick D, Erickson P. Health status and health policy: quality of life in health care evaluation and resource allocation. New York: Oxford University Press; 1993.
- 44. Yueh B. Measuring and Reporting Quality of Life in Head and Neck Cancer. McLean, Virginia; 2002.
- 45. Rogers SN, Gwanne S, Lowe D, et al. The addition of mood and anxiety domains to the University of Washington quality of life scale. Head Neck 2002;24:521-529. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12112548.
- 46. Bjordal K, Hammerlid E, Ahlner-Elmqvist M, et al. Quality of life in head and neck cancer patients: validation of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-H&N35. J Clin Oncol 1999;17:1008-1019. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10071296.
- 47. Cella D. Manual for the Functional Assessment of Cancer Therapy (FACT) Measurement System (version 4). Chicago: Rush Medical Center; 1997.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

- 48. List MA, D'Antonio LL, Cella DF, et al. The Performance Status Scale for Head and Neck Cancer Patients and the Functional Assessment of Cancer Therapy-Head and Neck Scale. A study of utility and validity. Cancer 1996;77:2294-2301. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8635098.
- 49. Harrison L, Sessions R, Hong W. Head and Neck Cancer: A Multidisciplinary Approach, 3rd edition. Philadelphia, PA: Lippincott Williams & Wilkins; 2009.
- 50. DeVita Jr. V, Lawrence T, Rosenberg S, eds. Cancer: Principles & Practice of Oncology, 8th edition. Philadelphia: Lippincott Williams & Wilkins: 2008.
- 51. Adelstein DJ, Ridge JA, Brizel DM, et al. Transoral resection of pharyngeal cancer: summary of a National Cancer Institute Head and Neck Cancer Steering Committee Clinical Trials Planning Meeting, November 6-7, 2011, Arlington, Virginia. Head Neck 2012;34:1681-1703. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23015475.
- 52. Arens C. Transoral treatment strategies for head and neck tumors. GMS Curr Top Otorhinolaryngol Head Neck Surg 2012;11:Doc05. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23320057.
- 53. Weinstein GS, O'Malley BW, Jr., Magnuson JS, et al. Transoral robotic surgery: a multicenter study to assess feasibility, safety, and surgical margins. Laryngoscope 2012;122:1701-1707. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22752997.
- 54. Li RJ, Richmon JD. Transoral endoscopic surgery: new surgical techniques for oropharyngeal cancer. Otolaryngol Clin North Am 2012;45:823-844. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/22793855.

55. Robbins KT, Shaha AR, Medina JE, et al. Consensus statement on the classification and terminology of neck dissection. Arch Otolaryngol Head Neck Surg 2008;134:536-538. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18490577.

- 56. Byers RM. Neck dissection: concepts, controversies, and technique. Semin Surg Oncol 1991;7:9-13. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2003186.
- 57. Stringer SP. Current concepts in surgical management of neck metastases from head and neck cancer. Oncology (Williston Park) 1995;9:547-554. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8719100.
- 58. Robbins KT, Clayman G, Levine PA, et al. Neck dissection classification update: revisions proposed by the American Head and Neck Society and the American Academy of Otolaryngology-Head and Neck Surgery. Arch Otolaryngol Head Neck Surg 2002;128:751-758. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12117328.
- 59. Candela FC, Kothari K, Shah JP. Patterns of cervical node metastases from squamous carcinoma of the oropharynx and hypopharynx. Head Neck 1990;12:197-203. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2358329.
- 60. Candela FC, Shah J, Jaques DP, Shah JP. Patterns of cervical node metastases from squamous carcinoma of the larynx. Arch Otolaryngol Head Neck Surg 1990;116:432-435. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2317325.
- 61. Shah JP, Candela FC, Poddar AK. The patterns of cervical lymph node metastases from squamous carcinoma of the oral cavity. Cancer 1990;66:109-113. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2354399.
- 62. Ferlito A, Rinaldo A, Silver CE, et al. Elective and therapeutic selective neck dissection. Oral Oncol 2006;42:14-25. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15979381.
- 63. Schmitz S, Machiels JP, Weynand B, et al. Results of selective neck dissection in the primary management of head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2009;266:437-443. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18648835.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

- 64. Patel RS, Clark J, Wyten R, et al. Squamous cell carcinoma from an unknown head and neck primary site: a "selective treatment" approach. Arch Otolaryngol Head Neck Surg 2007;133:1282-1287. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18086973.
- 65. Sivanandan R, Kaplan MJ, Lee KJ, et al. Long-term results of 100 consecutive comprehensive neck dissections: implications for selective neck dissections. Arch Otolaryngol Head Neck Surg 2004;130:1369-1373. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15611394.
- 66. Liauw SL, Mancuso AA, Amdur RJ, et al. Postradiotherapy neck dissection for lymph node-positive head and neck cancer: the use of computed tomography to manage the neck. J Clin Oncol 2006;24:1421-1427. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16549836.
- 67. Porceddu SV, Jarmolowski E, Hicks RJ, et al. Utility of positron emission tomography for the detection of disease in residual neck nodes after (chemo)radiotherapy in head and neck cancer. Head Neck 2005;27:175-181. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15627258.
- 68. Yao M, Smith RB, Hoffman HT, et al. Clinical significance of postradiotherapy [18F]-fluorodeoxyglucose positron emission tomography imaging in management of head-and-neck cancer-a long-term outcome report. Int J Radiat Oncol Biol Phys 2009;74:9-14. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18930358.
- 69. Lango MN, Myers JN, Garden AS. Controversies in surgical management of the node-positive neck after chemoradiation. Semin Radiat Oncol 2009;19:24-28. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19028342.
- 70. Isles MG, McConkey C, Mehanna HM. A systematic review and meta-analysis of the role of positron emission tomography in the follow up of head and neck squamous cell carcinoma following radiotherapy or chemoradiotherapy. Clin Otolaryngol 2008;33:210-222. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18559026.

- 71. Corry J, Peters L, Fisher R, et al. N2-N3 neck nodal control without planned neck dissection for clinical/radiologic complete responders-results of Trans Tasman Radiation Oncology Group Study 98.02. Head Neck 2008;30:737-742. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18286488.
- 72. Lau H, Phan T, Mackinnon J, Matthews TW. Absence of planned neck dissection for the N2-N3 neck after chemoradiation for locally advanced squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 2008;134:257-261. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18347249.
- 73. Ong SC, Schoder H, Lee NY, et al. Clinical utility of 18F-FDG PET/CT in assessing the neck after concurrent chemoradiotherapy for Locoregional advanced head and neck cancer. J Nucl Med 2008;49:532-540. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18344440.
- 74. Nayak JV, Walvekar RR, Andrade RS, et al. Deferring planned neck dissection following chemoradiation for stage IV head and neck cancer: the utility of PET-CT. Laryngoscope 2007;117:2129-2134. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17921898.
- 75. Abgral R, Querellou S, Potard G, et al. Does 18F-FDG PET/CT improve the detection of posttreatment recurrence of head and neck squamous cell carcinoma in patients negative for disease on clinical follow-up? J Nucl Med 2009;50:24-29. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19091901.
- 76. Porceddu SV, Pryor DI, Burmeister E, et al. Results of a prospective study of positron emission tomography-directed management of residual nodal abnormalities in node-positive head and neck cancer after definitive radiotherapy with or without systemic therapy. Head Neck 2011;33:1675-1682. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22076976.
- 77. Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

and neck cancer. N Engl J Med 2004;350:1945-1952. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15128894.

- 78. Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 2004;350:1937-1944. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15128893.
- 79. Cooper JS, Zhang Q, Pajak TF, et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2012;84:1198-1205. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22749632.
- 80. Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck 2005;27:843-850. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16161069.
- 81. Bachaud JM, Cohen-Jonathan E, Alzieu C, et al. Combined postoperative radiotherapy and weekly cisplatin infusion for locally advanced head and neck carcinoma: final report of a randomized trial. Int J Radiat Oncol Biol Phys 1996;36:999-104. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8985019.
- 82. Shah JP, Cendon RA, Farr HW, Strong EW. Carcinoma of the oral cavity. factors affecting treatment failure at the primary site and neck. Am J Surg 1976;132:504-507. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1015542.
- 83. Looser KG, Shah JP, Strong EW. The significance of "positive" margins in surgically resected epidermoid carcinomas. Head Neck Surg 1978;1:107-111. Available at: http://www.ncbi.nlm.nih.gov/pubmed/755803.

- 84. Johnson JT, Barnes EL, Myers EN, et al. The extracapsular spread of tumors in cervical node metastasis. Arch Otolaryngol 1981;107:725-729. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7316852.
- 85. Feldman M, Fletcher GH. Analysis of the parameters relating to failures above the clavicles in patients treated by postoperative irradiation for squamous cell carcinomas of the oral cavity or oropharynx. Int J Radiat Oncol Biol Phys 1982;8:27-30. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7061253.
- 86. Mirimanoff RO, Wang CC, Doppke KP. Combined surgery and postoperative radiation therapy for advanced laryngeal and hypopharyngeal carcinomas. Int J Radiat Oncol Biol Phys 1985;11:499-504. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3972662.
- 87. Peters LJ, Goepfert H, Ang KK, et al. Evaluation of the dose for postoperative radiation therapy of head and neck cancer: first report of a prospective randomized trial. Int J Radiat Oncol Biol Phys 1993;26:3-11. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8482629.
- 88. Fu KK, Pajak TF, Trotti A, et al. A Radiation Therapy Oncology Group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003. Int J Radiat Oncol Biol Phys 2000;48:7-16. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/10924966.

- 89. Beitler JJ, Zhang Q, Fu KK, et al. Final results of local-regional control and late toxicity of RTOG 9003: a randomized trial of altered fractionation radiation for locally advanced head and neck cancer. Int J Radiat Oncol Biol Phys 2014;89:13-20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24613816.
- 90. Overgaard J, Hansen HS, Specht L, et al. Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

trial. Lancet 2003;362:933-940. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14511925.

- 91. Fletcher GH. Textbook of Radiotherapy (ed 3rd): Lea & Febiger; 1980:194-219.
- 92. Northrop M, Fletcher GH, Jesse RH, Lindberg RD. Evolution of neck disease in patients with primary squamous cell carcinoma of the oral tongue, floor of mouth, and palatine arch, and clinically positive neck nodes neither fixed nor bilateral. Cancer 1972;29:23-30. Available at: http://www.ncbi.nlm.nih.gov/pubmed/5007385.
- 93. Barkley HT, Fletcher GH. The significance of residual disease after external irradiation of squamous-cell carcinoma of the oropharynx. Radiology 1977;124:493-495. Available at: http://www.ncbi.nlm.nih.gov/pubmed/877290.
- 94. Arcangeli G, Friedman M, Paoluzi R. A quantitative study of late radiation effect on normal skin and subcutaneous tissues in human beings. Br J Radiol 1974;47:44-50. Available at: http://www.ncbi.nlm.nih.gov/pubmed/4809425.
- 95. Andrews JR. Dose-Time Relationships in Cancer Radiotherapy. A Clinical Radiobiology Study of Extremes of Dose and Time. Am J Roentgenol Radium Ther Nucl Med 1965;93:56-74. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14243019.
- 96. ICRU Report 62. Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). Journal of the ICRU 1999. Available at:
- 97. ICRU Report 83: Prescribing, Recording, and Reporting Intensity Modulated Photon Beam Therapy (IMRT). Journal of the ICRU 2010;10. Available at: http://jicru.oxfordjournals.org/content/10/1.toc.
- 98. Garden AS, Dong L, Morrison WH, et al. Patterns of disease recurrence following treatment of oropharyngeal cancer with intensity

modulated radiation therapy. Int J Radiat Oncol Biol Phys 2013;85:941-947. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22975604.

- 99. Daly ME, Le QT, Maxim PG, et al. Intensity-modulated radiotherapy in the treatment of oropharyngeal cancer: clinical outcomes and patterns of failure. Int J Radiat Oncol Biol Phys 2010;76:1339-1346. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19540068.
- 100. Thames HD, Jr., Withers HR, Peters LJ, Fletcher GH. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 1982;8:219-226. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/7085377.

- 101. Withers H, Thames H, Peters L. Differences in the fractionation response of acutely and late-responding tissues In: Kaercher K, Kogelnik H, Reinartz G, eds, eds. Progress in Radio-Oncology II. Vol. 11. New York: Raven Press; 1982:287-296.
- 102. Withers HR, Taylor JM, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 1988:27:131-146. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/3390344.

103. Harwood AR, Beale FA, Cummings BJ, et al. T4NOMO glottic cancer: an analysis of dose-time volume factors. Int J Radiat Oncol Biol Phys 1981;7:1507-1512. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/7333899.

104. Amornmarn R, Prempree T, Viravathana T, et al. A therapeutic approach to early vocal cord carcinoma. Acta Radiol Oncol 1985;24:321-325. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/2994388.

105. Schwaibold F, Scariato A, Nunno M, et al. The effect of fraction size on control of early glottic cancer. Int J Radiat Oncol Biol Phys 1988;14:451-454. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/3343152.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

106. Kim RY, Marks ME, Salter MM. Early-stage glottic cancer: importance of dose fractionation in radiation therapy. Radiology 1992;182:273-275. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/1727295.

- 107. Parson J. Time-dose-volume relationships in radiation therapy. In: Million R, Cassisi N, eds. Management of Head and Neck Cancer: A Multidisciplinary Approach, 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 1994:203-243.
- 108. Yamazaki H, Nishiyama K, Tanaka E, et al. Radiotherapy for early glottic carcinoma (T1N0M0): results of prospective randomized study of radiation fraction size and overall treatment time. Int J Radiat Oncol Biol Phys 2006;64:77-82. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/16169681.

- 109. Yu E, Shenouda G, Beaudet MP, Black MJ. Impact of radiation therapy fraction size on local control of early glottic carcinoma. Int J Radiat Oncol Biol Phys 1997;37:587-591. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9112457.
- 110. Horiot JC, Le Fur R, N'Guyen T, et al. Hyperfractionation versus conventional fractionation in oropharyngeal carcinoma: final analysis of a randomized trial of the EORTC cooperative group of radiotherapy. Radiother Oncol 1992;25:231-241. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1480768.
- 111. Horiot JC. [Controlled clinical trials of hyperfractionated and accelerated radiotherapy in otorhinolaryngologic cancers]. Bull Acad Natl Med 1998;182:1247-1260; discussion 1261. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9812410.
- 112. Horiot JC, Bontemps P, van den Bogaert W, et al. Accelerated fractionation (AF) compared to conventional fractionation (CF) improves loco-regional control in the radiotherapy of advanced head and neck cancers: results of the EORTC 22851 randomized trial. Radiother Oncol 1997;44:111-121. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/9288839.

- 113. Konski AA, Winter K, Cole BF, et al. Quality-adjusted survival analysis of Radiation Therapy Oncology Group (RTOG) 90-03: phase III randomized study comparing altered fractionation to standard fractionation radiotherapy for locally advanced head and neck squamous cell carcinoma. Head Neck 2009;31:207-212. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19107946.
- 114. Bourhis J, Overgaard J, Audry H, et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet 2006;368:843-854. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16950362.
- 115. Baujat B, Bourhis J, Blanchard P, et al. Hyperfractionated or accelerated radiotherapy for head and neck cancer. Cochrane Database Syst Rev 2010;12:CD002026. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21154350.
- 116. Bourhis J, Sire C, Graff P, et al. Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02): an open-label phase 3 randomised trial. Lancet Oncol 2012;13:145-153. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22261362.
- 117. Haigentz M, Jr., Corry J, Strojan P, Ferlito A. Easing acceleration of head and neck chemoradiotherapy. Lancet Oncol 2012;13:113-115. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22261361.
- 118. Budach V, Stuschke M, Budach W, et al. Hyperfractionated accelerated chemoradiation with concurrent fluorouracil-mitomycin is more effective than dose-escalated hyperfractionated accelerated radiation therapy alone in locally advanced head and neck cancer: final results of the radiotherapy cooperative clinical trials group of the German Cancer Society 95-06 Prospective Randomized Trial. J Clin Oncol 2005;23:1125-1135. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/15718308.

NCCN Guidelines Index Head and Neck Table of Contents Discussion

119. Budach W, Hehr T, Budach V, et al. A meta-analysis of hyperfractionated and accelerated radiotherapy and combined chemotherapy and radiotherapy regimens in unresected locally advanced squamous cell carcinoma of the head and neck. BMC Cancer 2006;6:28-28. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/16448551.

- 120. Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010;363:24-35. Available at:
- http://www.ncbi.nlm.nih.gov/pubmed/20530316.
- 121. Bensadoun R-J, Benezery K, Dassonville O, et al. French multicenter phase III randomized study testing concurrent twice-a-day radiotherapy and cisplatin/5-fluorouracil chemotherapy (BiRCF) in unresectable pharyngeal carcinoma: Results at 2 years (FNCLCC-GORTEC). Int J Radiat Oncol Biol Phys 2006;64:983-994. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16376489.
- 122. Brizel DM, Albers ME, Fisher SR, et al. Hyperfractionated irradiation with or without concurrent chemotherapy for locally advanced head and neck cancer. N Engl J Med 1998;338:1798-1804. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9632446.
- 123. Jeremic B, Shibamoto Y, Milicic B, et al. Hyperfractionated radiation therapy with or without concurrent low-dose daily cisplatin in locally advanced squamous cell carcinoma of the head and neck: a prospective randomized trial. J Clin Oncol 2000;18:1458-1464. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10735893.
- 124. Ang K, Zhang Q, Wheeler RH, et al. A phase III trial (RTOG 0129) of two radiation-cisplatin regimens for head and neck carcinomas (HNC): Impact of radiation and cisplatin intensity on outcome [abstract]. J Clin Oncol 2010;28(Suppl 15):Abstract 5507. Available at: http://meeting.ascopubs.org/cgi/content/abstract/28/15_suppl/5507.
- 125. Denis F, Garaud P, Bardet E, et al. Final results of the 94-01 French Head and Neck Oncology and Radiotherapy Group randomized

- trial comparing radiotherapy alone with concomitant radiochemotherapy in advanced-stage oropharynx carcinoma. J Clin Oncol 2004;22:69-76. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14657228.
- 126. Denis F, Garaud P, Bardet E, et al. Late toxicity results of the GORTEC 94-01 randomized trial comparing radiotherapy with concomitant radiochemotherapy for advanced-stage oropharynx carcinoma: comparison of LENT/SOMA, RTOG/EORTC, and NCI-CTC scoring systems. Int J Radiat Oncol Biol Phys 2003;55:93-98. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12504040.
- 127. Bourhis J, Calais G, Lapeyre M, et al. Concomitant radiochemotherapy or accelerated radiotherapy: analysis of two randomized trials of the French Head and Neck Cancer Group (GORTEC). Semin Oncol 2004;31:822-826. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15599861.
- 128. Machtay M, Moughan J, Trotti A, et al. Factors associated with severe late toxicity after concurrent chemoradiation for locally advanced head and neck cancer: an RTOG analysis. J Clin Oncol 2008;26:3582-3589. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18559875.
- 129. Hartford AC, Palisca MG, Eichler TJ, et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) Practice Guidelines for Intensity-Modulated Radiation Therapy (IMRT). Int J Radiat Oncol Biol Phys 2009;73:9-14. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19100920.
- 130. Holmes T, Das R, Low D, et al. American Society of Radiation Oncology recommendations for documenting intensity-modulated radiation therapy treatments. Int J Radiat Oncol Biol Phys 2009;74:1311-1318. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19616738.
- 131. Gregoire V, Mackie TR. State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy (ICRU report No. 83). Cancer Radiother 2011;15:555-559. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21802333.

NCCN Guidelines Index Head and Neck Table of Contents Discussion

- 132. Wu Q, Manning M, Schmidt-Ullrich R, Mohan R. The potential for sparing of parotids and escalation of biologically effective dose with intensity-modulated radiation treatments of head and neck cancers: a treatment design study. Int J Radiat Oncol Biol Phys 2000;46:195-205. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10656393.
- 133. Chao KS, Majhail N, Huang CJ, et al. Intensity-modulated radiation therapy reduces late salivary toxicity without compromising tumor control in patients with oropharyngeal carcinoma: a comparison with conventional techniques. Radiother Oncol 2001;61:275-280. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11730997.
- 134. Dogan N, King S, Emami B, et al. Assessment of different IMRT boost delivery methods on target coverage and normal-tissue sparing. Int J Radiat Oncol Biol Phys 2003;57:1480-1491. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14630288.
- 135. Li Y, Taylor JMG, Ten Haken RK, Eisbruch A. The impact of dose on parotid salivary recovery in head and neck cancer patients treated with radiation therapy. Int J Radiat Oncol Biol Phys 2007;67:660-669. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17141973.
- 136. Vergeer MR, Doornaert PA, Rietveld DH, et al. Intensity-modulated radiotherapy reduces radiation-induced morbidity and improves health-related quality of life: results of a nonrandomized prospective study using a standardized follow-up program. Int J Radiat Oncol Biol Phys 2009:74:1-8. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/19111400.

137. Pow EHN, Kwong DLW, McMillan AS, et al. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. Int J Radiat Oncol Biol Phys 2006;66:981-991. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/17145528.

138. Kam MKM, Leung S-F, Zee B, et al. Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-

- stage nasopharyngeal carcinoma patients. J Clin Oncol 2007;25:4873-4879. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17971582.
- 139. Pfister D, Cassileth B, Deng G, et al. Acupuncture for pain and dysfunction after neck dissection: Results of a randomized controlled trial. J Clin Oncol 2010;28:2565-2570. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20406930.
- 140. Scarantino C, LeVeque F, Swann RS, et al. Effect of pilocarpine during radiation therapy: results of RTOG 97-09, a phase III randomized study in head and neck cancer patients. J Support Oncol 2006;4:252-258. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16724649.
- 141. Petrone D, Condemi JJ, Fife R, et al. A double-blind, randomized, placebo-controlled study of cevimeline in Sjogren's syndrome patients with xerostomia and keratoconjunctivitis sicca. Arthritis Rheum 2002;46:748-754. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11920411.
- 142. Gregoire V, Jeraj R, Lee JA, O'Sullivan B. Radiotherapy for head and neck tumours in 2012 and beyond: conformal, tailored, and adaptive? Lancet Oncol 2012;13:e292-300. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22748268.
- 143. Galvin JM, De Neve W. Intensity modulating and other radiation therapy devices for dose painting. J Clin Oncol 2007;25:924-930. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17350940.
- 144. Lauve A, Morris M, Schmidt-Ullrich R, et al. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas: II--clinical results. Int J Radiat Oncol Biol Phys 2004;60:374-387. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15380569.
- 145. Schoenfeld GO, Amdur RJ, Morris CG, et al. Patterns of failure and toxicity after intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 2008;71:377-385. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18164838.

NCCN Guidelines Index Head and Neck Table of Contents Discussion

146. Ang KK, Chen A, Curran WJ, Jr., et al. Head and neck carcinoma in the United States: first comprehensive report of the Longitudinal Oncology Registry of Head and Neck Carcinoma (LORHAN). Cancer 2012;118:5783-5792. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/22569917.

- 147. Guadagnolo BA, Liu CC, Cormier JN, Du XL. Evaluation of trends in the use of intensity-modulated radiotherapy for head and neck cancer from 2000 through 2005: socioeconomic disparity and geographic variation in a large population-based cohort. Cancer 2010;116:3505-3512. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20564123.
- 148. Chi A, Nguyen NP, Tse W, et al. Intensity modulated radiotherapy for sinonasal malignancies with a focus on optic pathway preservation. J Hematol Oncol 2013;6:4. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23294673.
- 149. Lee NY, de Arruda FF, Puri DR, et al. A comparison of intensity-modulated radiation therapy and concomitant boost radiotherapy in the setting of concurrent chemotherapy for locally advanced oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2006;66:966-974. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17145527.
- 150. de Arruda FF, Puri DR, Zhung J, et al. Intensity-modulated radiation therapy for the treatment of oropharyngeal carcinoma: the Memorial Sloan-Kettering Cancer Center experience. Int J Radiat Oncol Biol Phys 2006;64:363-373. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15925451.
- 151. Garden AS, Morrison WH, Wong P-F, et al. Disease-control rates following intensity-modulated radiation therapy for small primary oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2007;67:438-444. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17141972.
- 152. Eisbruch A, Levendag PC, Feng FY, et al. Can IMRT or brachytherapy reduce dysphagia associated with chemoradiotherapy of head and neck cancer? The Michigan and Rotterdam experiences. Int J

Radiat Oncol Biol Phys 2007;69:S40-42. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17848291.

153. Wolden SL, Chen WC, Pfister DG, et al. Intensity-modulated radiation therapy (IMRT) for nasopharynx cancer: update of the Memorial Sloan-Kettering experience. Int J Radiat Oncol Biol Phys 2006;64:57-62. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/15936155.

- 154. Madani I, Bonte K, Vakaet L, et al. Intensity-modulated radiotherapy for sinonasal tumors: Ghent University Hospital update. Int J Radiat Oncol Biol Phys 2009;73:424-432. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18755554.
- 155. Eisbruch A. Reducing xerostomia by IMRT: what may, and may not, be achieved. J Clin Oncol 2007;25:4863-4864. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17971579.
- 156. Nutting CM, Morden JP, Harrington KJ, et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol 2011;12:127-136. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21236730.
- 157. Hodge CW, Bentzen SM, Wong G, et al. Are we influencing outcome in oropharynx cancer with intensity-modulated radiotherapy? An inter-era comparison. Int J Radiat Oncol Biol Phys 2007;69:1032-1041. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17967300.
- 158. Veldeman L, Madani I, Hulstaert F, et al. Evidence behind use of intensity-modulated radiotherapy: a systematic review of comparative clinical studies. Lancet Oncol 2008;9:367-375. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18374290.
- 159. Turaka A, Li T, Sharma NK, et al. Increased recurrences using intensity-modulated radiation therapy in the postoperative setting. Am J Clin Oncol 2010;33:599-603. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/21063195.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

- 160. Chen AM, Farwell DG, Luu Q, et al. Marginal misses after postoperative intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 2011;80:1423-1429. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20656416.
- 161. Eisbruch A, Marsh LH, Dawson LA, et al. Recurrences near base of skull after IMRT for head-and-neck cancer: implications for target delineation in high neck and for parotid gland sparing. Int J Radiat Oncol Biol Phys 2004;59:28-42. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15093896.
- 162. Rosenthal DI, Trotti A. Strategies for managing radiation-induced mucositis in head and neck cancer. Semin Radiat Oncol 2009;19:29-34. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19028343.
- 163. Yao M, Lu M, Savvides PS, et al. Distant metastases in head-and-neck squamous cell carcinoma treated with intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2012;83:684-689. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22169673.
- 164. Frank SJ, Rosenthal DI, Petsuksiri J, et al. Intensity-modulated radiotherapy for cervical node squamous cell carcinoma metastases from unknown head-and-neck primary site: M. D. Anderson Cancer Center outcomes and patterns of failure. Int J Radiat Oncol Biol Phys 2010;78:1005-1010. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/20207504.

- 165. Traynor AM, Richards GM, Hartig GK, et al. Comprehensive IMRT plus weekly cisplatin for advanced head and neck cancer: the University of Wisconsin experience. Head Neck 2010;32:599-606. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19757422.
- 166. Sher DJ, Thotakura V, Balboni TA, et al. Treatment of oral cavity squamous cell carcinoma with adjuvant or definitive intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2011;81:e215-222. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21531515.

167. Geretschlager A, Bojaxhiu B, Crowe S, et al. Outcome and patterns of failure after postoperative intensity modulated radiotherapy for locally advanced or high-risk oral cavity squamous cell carcinoma. Radiat Oncol 2012;7:175. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/23088283.

168. Schoenfeld JD, Sher DJ, Norris CM, Jr., et al. Salivary gland tumors treated with adjuvant intensity-modulated radiotherapy with or without concurrent chemotherapy. Int J Radiat Oncol Biol Phys 2012;82:308-314. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/21075557.

- 169. Gomez DR, Zhung JE, Gomez J, et al. Intensity-modulated radiotherapy in postoperative treatment of oral cavity cancers. Int J Radiat Oncol Biol Phys 2009;73:1096-1103. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18707827.
- 170. Lee NY, O'Meara W, Chan K, et al. Concurrent chemotherapy and intensity-modulated radiotherapy for locoregionally advanced laryngeal and hypopharyngeal cancers. Int J Radiat Oncol Biol Phys 2007;69:459-468. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17493769.
- 171. Paris KJ, Spanos WJ, Jr., Lindberg RD, et al. Phase I-II study of multiple daily fractions for palliation of advanced head and neck malignancies. Int J Radiat Oncol Biol Phys 1993;25:657-660. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7681051.
- 172. Stevens CM, Huang SH, Fung S, et al. Retrospective study of palliative radiotherapy in newly diagnosed head and neck carcinoma. Int J Radiat Oncol Biol Phys 2011;81:958-963. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20950952.
- 173. Porceddu SV, Rosser B, Burmeister BH, et al. Hypofractionated radiotherapy for the palliation of advanced head and neck cancer in patients unsuitable for curative treatment--"Hypo Trial". Radiother Oncol 2007;85:456-462. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/18036689.

NCCN Guidelines Index Head and Neck Table of Contents Discussion

- 174. Corry J, Peters LJ, Costa ID, et al. The 'QUAD SHOT'--a phase II study of palliative radiotherapy for incurable head and neck cancer. Radiother Oncol 2005;77:137-142. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16260054.
- 175. Pigneux J, Richaud PM, Lagarde C. The place of interstitial therapy using 192 iridium in the management of carcinoma of the lip. Cancer 1979;43:1073-1077. Available at: http://www.ncbi.nlm.nih.gov/pubmed/427714.
- 176. Colevas AD, Read R, Thornhill J, et al. Hypothyroidism incidence after multimodality treatment for stage III and IV squamous cell carcinomas of the head and neck. Int J Radiat Oncol Biol Phys 2001;51:599-604. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11597798.
- 177. Tell R, Lundell G, Nilsson B, et al. Long-term incidence of hypothyroidism after radiotherapy in patients with head-and-neck cancer. Int J Radiat Oncol Biol Phys 2004;60:395-400. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15380571.
- 178. Posner MR, Ervin TJ, Miller D, et al. Incidence of hypothyroidism following multimodality treatment for advanced squamous cell cancer of the head and neck. Laryngoscope 1984;94:451-454. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6708688.
- 179. Cousins N, MacAulay F, Lang H, et al. A systematic review of interventions for eating and drinking problems following treatment for head and neck cancer suggests a need to look beyond swallowing and trismus. Oral Oncol 2013;49:387-400. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23291294.
- 180. Locher JL, Bonner JA, Carroll WR, et al. Prophylactic percutaneous endoscopic gastrostomy tube placement in treatment of head and neck cancer: a comprehensive review and call for evidence-based medicine. JPEN J Parenter Enteral Nutr 2011;35:365-374. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21527598.

- 181. Langius JA, van Dijk AM, Doornaert P, et al. More than 10% weight loss in head and neck cancer patients during radiotherapy is independently associated with deterioration in quality of life. Nutr Cancer 2013;65:76-83. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23368916.
- 182. August DA, Huhmann MB. A.S.P.E.N. clinical guidelines: nutrition support therapy during adult anticancer treatment and in hematopoietic cell transplantation. JPEN J Parenter Enteral Nutr 2009;33:472-500. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19713551.
- 183. Garg S, Yoo J, Winquist E. Nutritional support for head and neck cancer patients receiving radiotherapy: a systematic review. Support Care Cancer 2010;18:667-677. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19582484.
- 184. Rabeneck L, McCullough LB, Wray NP. Ethically justified, clinically comprehensive guidelines for percutaneous endoscopic gastrostomy tube placement. Lancet 1997;349:496-498. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9040591.
- 185. Dysphagia Section OCSGMAoSCiCISoOO, Raber-Durlacher JE, Brennan MT, et al. Swallowing dysfunction in cancer patients. Support Care Cancer 2012;20:433-443. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22205548.
- 186. Wilson JA, Carding PN, Patterson JM. Dysphagia after nonsurgical head and neck cancer treatment: patients' perspectives. Otolaryngol Head Neck Surg 2011;145:767-771. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21746839.
- 187. Tschiesner U. Preservation of organ function in head and neck cancer. GMS Curr Top Otorhinolaryngol Head Neck Surg 2012;11:Doc07. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23320059.
- 188. Roe JW, Carding PN, Rhys-Evans PH, et al. Assessment and management of dysphagia in patients with head and neck cancer who

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

receive radiotherapy in the United Kingdom - a web-based survey. Oral Oncol 2012;48:343-348. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/22130454.

- 189. Russi EG, Corvo R, Merlotti A, et al. Swallowing dysfunction in head and neck cancer patients treated by radiotherapy: review and recommendations of the supportive task group of the Italian Association of Radiation Oncology. Cancer Treat Rev 2012;38:1033-1049. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22542950.
- 190. Cnossen IC, de Bree R, Rinkel RN, et al. Computerized monitoring of patient-reported speech and swallowing problems in head and neck cancer patients in clinical practice. Support Care Cancer 2012;20:2925-2931. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22395211.
- 191. Langendijk JA, Doornaert P, Verdonck-de Leeuw IM, et al. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol 2008;26:3770-3776. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/18669465.

- 192. Walker MP, Wichman B, Cheng AL, et al. Impact of Radiotherapy Dose on Dentition Breakdown in Head and Neck Cancer Patients. Pract Radiat Oncol 2011;1:142-148. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21857887.
- 193. Jensen SB, Pedersen AM, Vissink A, et al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: prevalence, severity and impact on quality of life. Support Care Cancer 2010;18:1039-1060. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20237805.
- 194. Epstein JB, Thariat J, Bensadoun RJ, et al. Oral complications of cancer and cancer therapy: from cancer treatment to survivorship. CA Cancer J Clin 2012;62:400-422. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22972543.

- 195. Duarte VM, Liu YF, Rafizadeh S, et al. Comparison of dental health of patients with head and neck cancer receiving IMRT vs conventional radiation. Otolaryngol Head Neck Surg 2014;150:81-86. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24145147.
- 196. Eisbruch A, Ten Haken RK, Kim HM, et al. Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. Int J Radiat Oncol Biol Phys 1999;45:577-587. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10524409.
- 197. Murdoch-Kinch CA, Kim HM, Vineberg KA, et al. Dose-effect relationships for the submandibular salivary glands and implications for their sparing by intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 2008;72:373-382. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18337023.
- 198. Little M, Schipper M, Feng FY, et al. Reducing xerostomia after chemo-IMRT for head-and-neck cancer: beyond sparing the parotid glands. Int J Radiat Oncol Biol Phys 2012;83:1007-1014. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22056067.
- 199. Chao KS. Protection of salivary function by intensity-modulated radiation therapy in patients with head and neck cancer. Semin Radiat Oncol 2002;12:20-25. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11917280.
- 200. Murdoch-Kinch CA, Zwetchkenbaum S. Dental management of the head and neck cancer patient treated with radiation therapy. J Mich Dent Assoc 2011;93:28-37. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/21888251.

201. Studer G, Glanzmann C, Studer SP, et al. Risk-adapted dental care prior to intensity-modulated radiotherapy (IMRT). Schweiz Monatsschr Zahnmed 2011;121:216-229. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21534021.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

202. Ben-David MA, Diamante M, Radawski JD, et al. Lack of osteoradionecrosis of the mandible after intensity-modulated radiotherapy for head and neck cancer: likely contributions of both dental care and improved dose distributions. Int J Radiat Oncol Biol Phys 2007;68:396-402. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/17321069.

203. Schiodt M, Hermund NU. Management of oral disease prior to radiation therapy. Support Care Cancer 2002;10:40-43. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11777187.

204. Thariat J, Ramus L, Darcourt V, et al. Compliance with fluoride custom trays in irradiated head and neck cancer patients. Support Care Cancer 2012;20:1811-1814. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21947441.

205. Horiot JC, Bone MC, Ibrahim E, Castro JR. Systematic dental management in head and neck irradiation. Int J Radiat Oncol Biol Phys 1981;7:1025-1029. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7298399.

206. Sulaiman F, Huryn JM, Zlotolow IM. Dental extractions in the irradiated head and neck patient: a retrospective analysis of Memorial Sloan-Kettering Cancer Center protocols, criteria, and end results. J Oral Maxillofac Surg 2003;61:1123-1131. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14586845.

207. Beumer J, 3rd, Harrison R, Sanders B, Kurrasch M. Postradiation dental extractions: a review of the literature and a report of 72 episodes. Head Neck Surg 1983;6:581-586. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6629794.

208. Chang DT, Sandow PR, Morris CG, et al. Do pre-irradiation dental extractions reduce the risk of osteoradionecrosis of the mandible? Head Neck 2007;29:528-536. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/17230555.

209. Gomez DR, Estilo CL, Wolden SL, et al. Correlation of osteoradionecrosis and dental events with dosimetric parameters in intensity-modulated radiation therapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2011;81:e207-213. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21570202.

210. Galler C, Epstein JB, Guze KA, et al. The development of osteoradionecrosis from sites of periodontal disease activity: report of 3 cases. J Periodontol 1992;63:310-316. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1573545.

211. Lee IJ, Koom WS, Lee CG, et al. Risk factors and dose-effect relationship for mandibular osteoradionecrosis in oral and oropharyngeal cancer patients. Int J Radiat Oncol Biol Phys 2009;75:1084-1091. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19327914.

212. O'Dell K, Sinha U. Osteoradionecrosis. Oral Maxillofac Surg Clin North Am 2011;23:455-464. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21798443.

213. Gevorgyan A, Wong K, Poon I, et al. Osteoradionecrosis of the mandible: a case series at a single institution. J Otolaryngol Head Neck Surg 2013;42:46. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24025531.

214. Jacobson AS, Buchbinder D, Hu K, Urken ML. Paradigm shifts in the management of osteoradionecrosis of the mandible. Oral Oncol 2010;46:795-801. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20843728.

215. Oh HK, Chambers MS, Martin JW, et al. Osteoradionecrosis of the mandible: treatment outcomes and factors influencing the progress of osteoradionecrosis. J Oral Maxillofac Surg 2009;67:1378-1386. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19531406.

216. Rhodus NL, Bereuter J. Clinical evaluation of a commercially available oral moisturizer in relieving signs and symptoms of xerostomia

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

in postirradiation head and neck cancer patients and patients with Sjogren's syndrome. J Otolaryngol 2000;29:28-34. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10709169.

- 217. Singh ML, Papas AS. Long-term clinical observation of dental caries in salivary hypofunction patients using a supersaturated calcium-phosphate remineralizing rinse. J Clin Dent 2009;20:87-92. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19711609.
- 218. Epstein JB, Schubert MM. Synergistic effect of sialagogues in management of xerostomia after radiation therapy. Oral Surg Oral Med Oral Pathol 1987;64:179-182. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3306552.
- 219. Gorsky M, Epstein JB, Parry J, et al. The efficacy of pilocarpine and bethanechol upon saliva production in cancer patients with hyposalivation following radiation therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:190-195. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14970777.
- 220. Johnson JT, Ferretti GA, Nethery WJ, et al. Oral pilocarpine for post-irradiation xerostomia in patients with head and neck cancer. N Engl J Med 1993;329:390-395. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8326972.
- 221. Dholam KP, Somani PP, Prabhu SD, Ambre SR. Effectiveness of fluoride varnish application as cariostatic and desensitizing agent in irradiated head and neck cancer patients. Int J Dent 2013;2013:824982. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23843793.
- 222. Epstein JB, van der Meij EH, Lunn R, Stevenson-Moore P. Effects of compliance with fluoride gel application on caries and caries risk in patients after radiation therapy for head and neck cancer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82:268-275. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8884824.
- 223. Horiot JC, Schraub S, Bone MC, et al. Dental preservation in patients irradiated for head and neck tumours: A 10-year experience

with topical fluoride and a randomized trial between two fluoridation methods. Radiother Oncol 1983;1:77-82. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6680214.

- 224. Fleming TJ. Use of topical fluoride by patients receiving cancer therapy. Curr Probl Cancer 1983;7:37-41. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6851628.
- 225. Joyston-Bechal S, Hayes K, Davenport ES, Hardie JM. Caries incidence, mutans streptococci and lactobacilli in irradiated patients during a 12-month preventive programme using chlorhexidine and fluoride. Caries Res 1992;26:384-390. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1468104.
- 226. Shulman DH, Shipman B, Willis FB. Treating trismus with dynamic splinting: a case report. J Oral Sci 2009;51:141-144. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19325212.
- 227. Teguh DN, Levendag PC, Voet P, et al. Trismus in patients with oropharyngeal cancer: relationship with dose in structures of mastication apparatus. Head Neck 2008;30:622-630. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18213726.
- 228. Brunello DL, Mandikos MN. The use of a dynamic opening device in the treatment of radiation induced trismus. Aust Prosthodont J 1995;9:45-48. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/9063134.

229. Epstein JB, Emerton S, Le ND, Stevenson-Moore P. A double-blind crossover trial of Oral Balance gel and Biotene toothpaste versus placebo in patients with xerostomia following radiation therapy. Oral Oncol 1999;35:132-137. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/10435146.

230. Papas A, Russell D, Singh M, et al. Caries clinical trial of a remineralising toothpaste in radiation patients. Gerodontology 2008;25:76-88. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/18485139.

NCCN Guidelines Index Head and Neck Table of Contents Discussion

- 231. McCombe D, MacGill K, Ainslie J, et al. Squamous cell carcinoma of the lip: a retrospective review of the Peter MacCallum Cancer Institute experience 1979-88. Aust N Z J Surg 2000;70:358-361. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10830600.
- 232. de Visscher JG, van den Elsaker K, Grond AJ, et al. Surgical treatment of squamous cell carcinoma of the lower lip: evaluation of long-term results and prognostic factors--a retrospective analysis of 184 patients. J Oral Maxillofac Surg 1998;56:814-820. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9663570.
- 233. de Visscher JG, Botke G, Schakenraad JA, van der Waal I. A comparison of results after radiotherapy and surgery for stage I squamous cell carcinoma of the lower lip. Head Neck 1999;21:526-530. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10449668.
- 234. de Visscher JG, Grond AJ, Botke G, van der Waal I. Results of radiotherapy for squamous cell carcinoma of the vermilion border of the lower lip. A retrospective analysis of 108 patients. Radiother Oncol 1996;39:9-14. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8735488.
- 235. Nag S, Cano ER, Demanes DJ, et al. The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for head-and-neck carcinoma. Int J Radiat Oncol Biol Phys 2001;50:1190-1198. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11483328.
- 236. Mazeron JJ, Ardiet JM, Haie-Meder C, et al. GEC-ESTRO recommendations for brachytherapy for head and neck squamous cell carcinomas. Radiother Oncol 2009;91:150-156. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19329209.
- 237. Babington S, Veness MJ, Cakir B, et al. Squamous cell carcinoma of the lip: is there a role for adjuvant radiotherapy in improving local control following incomplete or inadequate excision? ANZ J Surg 2003;73:621-625. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/12887533.

- 238. Fleming AJ, Jr., Smith SP, Jr., Paul CM, et al. Impact of [18F]-2-fluorodeoxyglucose-positron emission tomography/computed tomography on previously untreated head and neck cancer patients. Laryngoscope 2007;117:1173-1179. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17603315.
- 239. Alkureishi LW, Ross GL, Shoaib T, et al. Sentinel node biopsy in head and neck squamous cell cancer: 5-year follow-up of a European multicenter trial. Ann Surg Oncol 2010;17:2459-2464. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20552410.
- 240. Civantos FJ, Zitsch RP, Schuller DE, et al. Sentinel lymph node biopsy accurately stages the regional lymph nodes for T1-T2 oral squamous cell carcinomas: results of a prospective multi-institutional trial. J Clin Oncol 2010;28:1395-1400. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20142602.
- 241. Govers TM, Hannink G, Merkx MA, et al. Sentinel node biopsy for squamous cell carcinoma of the oral cavity and oropharynx: a diagnostic meta-analysis. Oral Oncol 2013;49:726-732. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23680537.
- 242. Samant S. Sentinel node biopsy as an alternative to elective neck dissection for staging of early oral carcinoma. Head Neck 2014;36:241-246. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23729239.
- 243. Broglie MA, Haerle SK, Huber GF, et al. Occult metastases detected by sentinel node biopsy in patients with early oral and oropharyngeal squamous cell carcinomas: impact on survival. Head Neck 2013;35:660-666. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22605675.
- 244. Kovacs AF, Stefenelli U, Seitz O, et al. Positive sentinel lymph nodes are a negative prognostic factor for survival in T1-2 oral/oropharyngeal cancer-a long-term study on 103 patients. Ann Surg Oncol 2009;16:233-239. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/18825461.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

- 245. Pezier T, Nixon IJ, Gurney B, et al. Sentinel lymph node biopsy for T1/T2 oral cavity squamous cell carcinoma--a prospective case series. Ann Surg Oncol 2012;19:3528-3533. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22411202.
- 246. Branstetter BF, Blodgett TM, Zimmer LA, et al. Head and neck malignancy: is PET/CT more accurate than PET or CT alone? Radiology 2005;235:580-586. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15858097.
- 247. Price KA, Cohen EE. Current treatment options for metastatic head and neck cancer. Curr Treat Options Oncol 2012;13:35-46. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22252884.
- 248. Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011;29:4294-4301. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21969503.
- 249. Gillison ML, Broutian T, Pickard RK, et al. Prevalence of oral HPV infection in the United States, 2009-2010. JAMA 2012;307:693-703. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22282321.
- 250. Nasman A, Attner P, Hammarstedt L, et al. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int J Cancer 2009;125:362-366. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19330833.
- 251. Hammarstedt L, Lindquist D, Dahlstrand H, et al. Human papillomavirus as a risk factor for the increase in incidence of tonsillar cancer. Int J Cancer 2006;119:2620-2623. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16991119.
- 252. Gillison ML, Alemany L, Snijders PJ, et al. Human papillomavirus and diseases of the upper airway: head and neck cancer and respiratory papillomatosis. Vaccine 2012;30 Suppl 5:F34-54. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23199965.

253. Fakhry C, Westra WH, Li S, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst 2008;100:261-269. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/18270337.

254. Rischin D, Young RJ, Fisher R, et al. Prognostic significance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase III trial. J Clin Oncol 2010;28:4142-4148. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/20697079.

255. Lassen P, Eriksen JG, Hamilton-Dutoit S, et al. Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck. J Clin Oncol 2009;27:1992-1998. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/19289615.

- 256. Ragin CCR, Taioli E. Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis. Int J Cancer 2007;121:1813-1820. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17546592.
- 257. Quon H, Forastiere AA. Controversies in treatment deintensification of human papillomavirus-associated oropharyngeal carcinomas: should we, how should we, and for whom? J Clin Oncol 2013;31:520-522. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23295808.
- 258. O'Sullivan B, Huang SH, Siu LL, et al. Deintensification candidate subgroups in human papillomavirus-related oropharyngeal cancer according to minimal risk of distant metastasis. J Clin Oncol 2013;31:543-550. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/23295795.

259. Sturgis EM, Ang KK. The epidemic of HPV-associated oropharyngeal cancer is here: is it time to change our treatment

NCCN Guidelines Index Head and Neck Table of Contents Discussion

paradigms? J Natl Compr Canc Netw 2011;9:665-673. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21636538.

- 260. Gillison ML, Zhang Q, Jordan R, et al. Tobacco smoking and increased risk of death and progression for patients with p16-positive and p16-negative oropharyngeal cancer. J Clin Oncol 2012;30:2102-2111. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22565003.
- 261. Sinha P, Lewis JS, Jr., Piccirillo JF, et al. Extracapsular spread and adjuvant therapy in human papillomavirus-related, p16-positive oropharyngeal carcinoma. Cancer 2012;118:3519-3530. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22086669.
- 262. Vermorken JB, Stohlmacher-Williams J, Davidenko I, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. Lancet Oncol 2013;14:697-710. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/23746666.

- 263. Mehra R, Ang KK, Burtness B. Management of human papillomavirus-positive and human papillomavirus-negative head and neck cancer. Semin Radiat Oncol 2012;22:194-197. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22687943.
- 264. Jordan RC, Lingen MW, Perez-Ordonez B, et al. Validation of methods for oropharyngeal cancer HPV status determination in US cooperative group trials. Am J Surg Pathol 2012;36:945-954. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22743284.
- 265. Begum S, Gillison ML, Nicol TL, Westra WH. Detection of human papillomavirus-16 in fine-needle aspirates to determine tumor origin in patients with metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res 2007;13:1186-1191. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17317828.

- 266. Hinni ML, Zarka MA, Hoxworth JM. Margin mapping in transoral surgery for head and neck cancer. Laryngoscope 2013;123:1190-1198. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23382042.
- 267. Haughey BH, Hinni ML, Salassa JR, et al. Transoral laser microsurgery as primary treatment for advanced-stage oropharyngeal cancer: a United States multicenter study. Head Neck 2011;33:1683-1694. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21284056.
- 268. Ko EC, Genden EM, Misiukiewicz K, et al. Toxicity profile and clinical outcomes in locally advanced head and neck cancer patients treated with induction chemotherapy prior to concurrent chemoradiation. Oncol Rep 2012;27:467-474. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22020564.
- 269. Vokes EE, Stenson K, Rosen FR, et al. Weekly carboplatin and paclitaxel followed by concomitant paclitaxel, fluorouracil, and hydroxyurea chemoradiotherapy: curative and organ-preserving therapy for advanced head and neck cancer. J Clin Oncol 2003;21:320-326. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12525525.
- 270. Hitt R, Grau JJ, Lopez-Pousa A, et al. A randomized phase III trial comparing induction chemotherapy followed by chemoradiotherapy versus chemoradiotherapy alone as treatment of unresectable head and neck cancer. Ann Oncol 2014;25:216-225. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24256848.
- 271. Hitt R, Lopez-Pousa A, Martinez-Trufero J, et al. Phase III study comparing cisplatin plus fluorouracil to paclitaxel, cisplatin, and fluorouracil induction chemotherapy followed by chemoradiotherapy in locally advanced head and neck cancer. J Clin Oncol 2005;23:8636-8645. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16275937.
- 272. Posner MR, Hershock DM, Blajman CR, et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med 2007;357:1705-1715. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17960013.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

- 273. Pignon JP, Bourhis J, Domenge C, Designe L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-Analysis of Chemotherapy on Head and Neck Cancer. Lancet 2000;355:949-955. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10768432.
- 274. Paccagnella A, Orlando A, Marchiori C, et al. Phase III trial of initial chemotherapy in stage III or IV head and neck cancers: a study by the Gruppo di Studio sui Tumori della Testa e del Collo. J Natl Cancer Inst 1994;86:265-272. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/8158680.

275. Lorch JH, Goloubeva O, Haddad RI, et al. Induction chemotherapy with cisplatin and fluorouracil alone or in combination with docetaxel in locally advanced squamous-cell cancer of the head and neck: long-term results of the TAX 324 randomised phase 3 trial. Lancet Oncol 2011;12:153-159. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/21233014.

- 276. Vermorken JB, Remenar E, van Herpen C, et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med 2007;357:1695-1704. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17960012.
- 277. Pignon J-P, le Maitre A, Maillard E, Bourhis J. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol 2009;92:4-14. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19446902.
- 278. Forastiere AA, Zhang Q, Weber RS, et al. Long-term results of RTOG 91-11: a comparison of three nonsurgical treatment strategies to preserve the larynx in patients with locally advanced larynx cancer. J Clin Oncol 2013;31:845-852. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23182993.
- 279. Lefebvre JL, Chevalier D, Luboinski B, et al. Larynx preservation in pyriform sinus cancer: preliminary results of a European Organization

for Research and Treatment of Cancer phase III trial. EORTC Head and Neck Cancer Cooperative Group. J Natl Cancer Inst 1996;88:890-899. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8656441.

280. Induction chemotherapy plus radiation compared with surgery plus radiation in patients with advanced laryngeal cancer. The Department of Veterans Affairs Laryngeal Cancer Study Group. N Engl J Med 1991;324:1685-1690. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/2034244.

281. McNeil BJ, Weichselbaum R, Pauker SG. Speech and survival: tradeoffs between quality and quantity of life in laryngeal cancer. N Engl J Med 1981;305:982-987. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/7278922.

- 282. Adelstein DJ, Li Y, Adams GL, et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol 2003;21:92-98. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12506176.
- 283. Lo TC, Wiley AL, Jr., Ansfield FJ, et al. Combined radiation therapy and 5-fluorouracil for advanced squamous cell carcinoma of the oral cavity and oropharynx: a randomized study. AJR Am J Roentgenol 1976;126:229-235. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/175693.

- 284. Sanchiz F, Milla A, Torner J, et al. Single fraction per day versus two fractions per day versus radiochemotherapy in the treatment of head and neck cancer. Int J Radiat Oncol Biol Phys 1990;19:1347-1350. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2262356.
- 285. Browman GP, Cripps C, Hodson DI, et al. Placebo-controlled randomized trial of infusional fluorouracil during standard radiotherapy in locally advanced head and neck cancer. J Clin Oncol 1994;12:2648-2653. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7989940.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

286. Smid L, Lesnicar H, Zakotnik B, et al. Radiotherapy, combined with simultaneous chemotherapy with mitomycin C and bleomycin for inoperable head and neck cancer--preliminary report. Int J Radiat Oncol Biol Phys 1995;32:769-775. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7540606.

287. Merlano M, Benasso M, Corvo R, et al. Five-year update of a randomized trial of alternating radiotherapy and chemotherapy compared with radiotherapy alone in treatment of unresectable squamous cell carcinoma of the head and neck. J Natl Cancer Inst 1996;88:583-589. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/8609658.

288. Wendt TG, Grabenbauer GG, Rodel CM, et al. Simultaneous radiochemotherapy versus radiotherapy alone in advanced head and neck cancer: a randomized multicenter study. J Clin Oncol 1998;16:1318-1324. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/9552032.

- 289. Munro AJ. An overview of randomised controlled trials of adjuvant chemotherapy in head and neck cancer. Br J Cancer 1995;71:83-91. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7819055.
- 290. EI-Sayed S, Nelson N. Adjuvant and adjunctive chemotherapy in the management of squamous cell carcinoma of the head and neck region. A meta-analysis of prospective and randomized trials. J Clin Oncol 1996;14:838-847. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8622032.
- 291. Bourhis J, Amand C, Pignon J-P. Update of MACH-NC (Meta-Analysis of Chemotherapy in Head & Neck Cancer) database focused on concomitant chemoradiotherapy [abstract]. J Clin Oncol 2004;22(Suppl 14):Abstract 5505. Available at: http://meeting.ascopubs.org/cgi/content/abstract/22/14 suppl/5505.
- 292. Pignon JP, le Maitre A, Bourhis J. Meta-Analyses of Chemotherapy in Head and Neck Cancer (MACH-NC): an update. Int J

Radiat Oncol Biol Phys 2007;69:S112-114. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17848275.

- 293. Forastiere AA, Goepfert H, Maor M, et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med 2003;349:2091-2098. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14645636.
- 294. Hanna GJ, Haddad RI, Lorch JH. Induction chemotherapy for locoregionally advanced head and neck cancer: past, present, future? Oncologist 2013;18:288-293. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23442306.
- 295. Argiris A, Haraf DJ, Kies MS, Vokes EE. Intensive concurrent chemoradiotherapy for head and neck cancer with 5-Fluorouracil- and hydroxyurea-based regimens: reversing a pattern of failure. Oncologist 2003;8:350-360. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/12897332.

- 296. Machtay M, Moughan J, Farach A, et al. Hypopharyngeal dose is associated with severe late toxicity in locally advanced head-and-neck cancer: an RTOG analysis. Int J Radiat Oncol Biol Phys 2012;84:983-989. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23078898.
- 297. Pointreau Y, Garaud P, Chapet S, et al. Randomized trial of induction chemotherapy with cisplatin and 5-fluorouracil with or without docetaxel for larynx preservation. J Natl Cancer Inst 2009;101:498-506. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19318632.
- 298. Haddad R, O'Neill A, Rabinowits G, et al. Induction chemotherapy followed by concurrent chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): a randomised phase 3 trial. Lancet Oncol 2013;14:257-264. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23414589.
- 299. Cohen EEW, Karrison T, Kocherginsky M, et al. DeCIDE: A phase III randomized trial of docetaxel (D), cisplatin (P), 5-fluorouracil (F)

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

(TPF) induction chemotherapy (IC) in patients with N2/N3 locally advanced squamous cell carcinoma of the head and neck (SCCHN) [abstract]. J Clin Oncol 2012;30(Suppl 15):Abstract 5500. Available at: http://meeting.ascopubs.org/cgi/content/abstract/30/15 suppl/5500.

300. Paccagnella A, Ghi MG, Loreggian L, et al. Concomitant chemoradiotherapy versus induction docetaxel, cisplatin and 5 fluorouracil (TPF) followed by concomitant chemoradiotherapy in locally advanced head and neck cancer: a phase II randomized study. Ann Oncol 2010;21:1515-1522. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20032123.

301. Buiret G, Combe C, Favrel V, et al. A retrospective, multicenter study of the tolerance of induction chemotherapy with docetaxel, Cisplatin, and 5-Fluorouracil followed by radiotherapy with concomitant cetuximab in 46 cases of squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2010;77:430-437. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19775831.

302. Lefebvre JL, Pointreau Y, Rolland F, et al. Induction chemotherapy followed by either chemoradiotherapy or bioradiotherapy for larynx preservation: the TREMPLIN randomized phase II study. J Clin Oncol 2013;31:853-859. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23341517.

303. Chitapanarux I, Lorvidhaya V, Kamnerdsupaphon P, et al. Chemoradiation comparing cisplatin versus carboplatin in locally advanced nasopharyngeal cancer: randomised, non-inferiority, open trial. Eur J Cancer 2007;43:1399-1406. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17467265.

304. Al-Sarraf M, LeBlanc M, Giri PG, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol 1998;16:1310-1317. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9552031.

305. Garden AS, Kies MS, Morrison WH, et al. Outcomes and patterns of care of patients with locally advanced oropharyngeal carcinoma

treated in the early 21st century. Radiat Oncol 2013;8:21. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23360540.

306. Al-Mamgani A, Van Rooij P, Tans L, et al. Toxicity and outcome of intensity-modulated radiotherapy versus 3-dimensional conformal radiotherapy for oropharyngeal cancer: a matched-pair analysis. Technol Cancer Res Treat 2013;12:123-130. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23098281.

307. Kotwall C, Sako K, Razack MS, et al. Metastatic patterns in squamous cell cancer of the head and neck. Am J Surg 1987;154:439-442. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3661849.

308. Lefebvre JL, Rolland F, Tesselaar M, et al. Phase 3 randomized trial on larynx preservation comparing sequential vs alternating chemotherapy and radiotherapy. J Natl Cancer Inst 2009;101:142-152. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19176454.

309. Cooper JS, del Rowe J, Newall J. Regional Stage IV carcinoma of the nasopharynx treated by aggressive radiotherapy. Int J Radiat Oncol Biol Phys 1983;9:1737-1745. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6417075.

310. Bailet JW, Mark RJ, Abemayor E, et al. Nasopharyngeal carcinoma: treatment results with primary radiation therapy. Laryngoscope 1992;102:965-972. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1518360.

- 311. Johansen LV, Mestre M, Overgaard J. Carcinoma of the nasopharynx: analysis of treatment results in 167 consecutively admitted patients. Head Neck 1992;14:200-207. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1587737.
- 312. Sanguineti G, Geara FB, Garden AS, et al. Carcinoma of the nasopharynx treated by radiotherapy alone: determinants of local and regional control. Int J Radiat Oncol Biol Phys 1997;37:985-996. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9169804.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

- 313. Wang C. Radiation Therapy for Head and Neck Neoplasms, 3rd ed. New York: Wiley-Liss; 1997.
- 314. Mesic JB, Fletcher GH, Goepfert H. Megavoltage irradiation of epithelial tumors of the nasopharynx. Int J Radiat Oncol Biol Phys 1981;7:447-453. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/6788731.

- 315. Hoppe RT, Goffinet DR, Bagshaw MA. Carcinoma of the nasopharynx. Eighteen years' experience with megavoltage radiation therapy. Cancer 1976;37:2605-2612. Available at: http://www.ncbi.nlm.nih.gov/pubmed/820419.
- 316. Wee J, Tan EH, Tai BC, et al. Randomized trial of radiotherapy versus concurrent chemoradiotherapy followed by adjuvant chemotherapy in patients with American Joint Committee on Cancer/International Union against cancer stage III and IV nasopharyngeal cancer of the endemic variety. J Clin Oncol 2005;23:6730-6738. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16170180.
- 317. Chan AT, Leung SF, Ngan RK, et al. Overall survival after concurrent cisplatin-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst 2005:97:536-539. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/15812080.

- 318. Chen L, Hu CS, Chen XZ, et al. Concurrent chemoradiotherapy plus adjuvant chemotherapy versus concurrent chemoradiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 3 multicentre randomised controlled trial. Lancet Oncol 2012;13:163-171. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22154591.
- 319. Dechaphunkul T, Pruegsanusak K, Sangthawan D, Sunpaweravong P. Concurrent chemoradiotherapy with carboplatin followed by carboplatin and 5-fluorouracil in locally advanced

nasopharyngeal carcinoma. Head Neck Oncol 2011;3:30. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21639934.

- 320. Bae WK, Hwang JE, Shim HJ, et al. Phase II study of docetaxel, cisplatin, and 5-FU induction chemotherapy followed by chemoradiotherapy in locoregionally advanced nasopharyngeal cancer. Cancer Chemother Pharmacol 2010;65:589-595. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19830427.
- 321. Hui EP, Ma BB, Leung SF, et al. Randomized phase II trial of concurrent cisplatin-radiotherapy with or without neoadjuvant docetaxel and cisplatin in advanced nasopharyngeal carcinoma. J Clin Oncol 2009;27:242-249. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19064973.
- 322. Chan ATC, Hsu M-M, Goh BC, et al. Multicenter, phase II study of cetuximab in combination with carboplatin in patients with recurrent or metastatic nasopharyngeal carcinoma. J Clin Oncol 2005;23:3568-3576. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15809453.
- 323. Chen C, Wang FH, Wang ZQ, et al. Salvage gemcitabine-vinorelbine chemotherapy in patients with metastatic nasopharyngeal carcinoma pretreated with platinum-based chemotherapy. Oral Oncol 2012;48:1146-1151. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22748450.
- 324. Zhang L, Zhang Y, Huang P-Y, et al. Phase II clinical study of gemcitabine in the treatment of patients with advanced nasopharyngeal carcinoma after the failure of platinum-based chemotherapy. Cancer Chemother Pharmacol 2008;61:33-38. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17909810.
- 325. Rodel RM, Steiner W, Muller RM, et al. Endoscopic laser surgery of early glottic cancer: involvement of the anterior commissure. Head Neck 2009;31:583-592. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19132720.

NCCN Guidelines Index Head and Neck Table of Contents Discussion

- 326. Zouhair A, Azria D, Coucke P, et al. Decreased local control following radiation therapy alone in early-stage glottic carcinoma with anterior commissure extension. Strahlenther Onkol 2004;180:84-90. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14762660.
- 327. Silver CE, Beitler JJ, Shaha AR, et al. Current trends in initial management of laryngeal cancer: the declining use of open surgery. Eur Arch Otorhinolaryngol 2009;266:1333-1352. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19597837.
- 328. Katz TS, Mendenhall WM, Morris CG, et al. Malignant tumors of the nasal cavity and paranasal sinuses. Head Neck 2002;24:821-829. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12211046.
- 329. Cohen ZR, Marmor E, Fuller GN, DeMonte F. Misdiagnosis of olfactory neuroblastoma. Neurosurg Focus 2002;12:e3. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16119901.
- 330. Ejaz A, Wenig BM. Sinonasal undifferentiated carcinoma: clinical and pathologic features and a discussion on classification, cellular differentiation, and differential diagnosis. Adv Anat Pathol 2005;12:134-143. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15900114.
- 331. lezzoni JC, Mills SE. "Undifferentiated" small round cell tumors of the sinonasal tract: differential diagnosis update. Am J Clin Pathol 2005;124 Suppl:110-121. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16468421.
- 332. Dulguerov P, Jacobsen MS, Allal AS, et al. Nasal and paranasal sinus carcinoma: are we making progress? A series of 220 patients and a systematic review. Cancer 2001;92:3012-3029. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11753979.
- 333. Munoz J, Kuriakose P. Antibiotic-refractory sinusitis. JAMA 2012;308:2399-2400. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23232896.

- 334. Oprea C, Cainap C, Azoulay R, et al. Primary diffuse large B-cell non-Hodgkin lymphoma of the paranasal sinuses: a report of 14 cases. Br J Haematol 2005;131:468-471. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16281936.
- 335. Al-Mamgani A, van Rooij P, Mehilal R, et al. Combined-modality treatment improved outcome in sinonasal undifferentiated carcinoma: single-institutional experience of 21 patients and review of the literature. Eur Arch Otorhinolaryngol 2013;270:293-299. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22476411.
- 336. Mourad WF, Hauerstock D, Shourbaji RA, et al. Trimodality Management of Sinonasal Undifferentiated Carcinoma and Review of the Literature. Am J Clin Oncol 2013;36:584-588. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22992621.
- 337. Lin EM, Sparano A, Spalding A, et al. Sinonasal undifferentiated carcinoma: a 13-year experience at a single institution. Skull Base 2010;20:61-67. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20808529.
- 338. Babin E, Rouleau V, Vedrine PO, et al. Small cell neuroendocrine carcinoma of the nasal cavity and paranasal sinuses. J Laryngol Otol 2006;120:289-297. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16526967.
- 339. Chen AM, Daly ME, El-Sayed I, et al. Patterns of failure after combined-modality approaches incorporating radiotherapy for sinonasal undifferentiated carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2008;70:338-343. Available at:
- $\underline{\text{http://www.ncbi.nlm.nih.gov/pubmed/18207030}}.$
- 340. Mendenhall WM, Mendenhall CM, Riggs CE, Jr., et al. Sinonasal undifferentiated carcinoma. Am J Clin Oncol 2006;29:27-31. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16462499.
- 341. Kim BS, Vongtama R, Juillard G. Sinonasal undifferentiated carcinoma: case series and literature review. Am J Otolaryngol

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

2004;25:162-166. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15124164.

342. Smith SR, Som P, Fahmy A, et al. A clinicopathological study of sinonasal neuroendocrine carcinoma and sinonasal undifferentiated carcinoma. Laryngoscope 2000;110:1617-1622. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11037813.

343. Diaz EM, Johnigan RH, Pero C, et al. Olfactory neuroblastoma: the 22-year experience at one comprehensive cancer center. Head Neck 2005;27:138-149. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15654688.

344. McLean JN, Nunley SR, Klass C, et al. Combined modality therapy of esthesioneuroblastoma. Otolaryngol Head Neck Surg 2007;136:998-1002. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17547995.

345. Ow TJ, Bell D, Kupferman ME, et al. Esthesioneuroblastoma. Neurosurg Clin N Am 2013;24:51-65. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23174357.

346. Song CM, Won TB, Lee CH, et al. Treatment modalities and outcomes of olfactory neuroblastoma. Laryngoscope 2012;122:2389-2395. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23070733.

347. Sohrabi S, Drabick JJ, Crist H, et al. Neoadjuvant concurrent chemoradiation for advanced esthesioneuroblastoma: a case series and review of the literature. J Clin Oncol 2011;29:e358-361. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21282533.

348. Kondo N, Takahashi H, Nii Y, Nagao J. Olfactory neuroblastoma: 15 years of experience. Anticancer Res 2012;32:1697-1703. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22593448.

349. Ozsahin M, Gruber G, Olszyk O, et al. Outcome and prognostic factors in olfactory neuroblastoma: a rare cancer network study. Int J Radiat Oncol Biol Phys 2010;78:992-997. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20231062.

350. Sohrabi S, Drabick JJ, Crist H, et al. Neoadjuvant Concurrent Chemoradiation for Advanced Esthesioneuroblastoma: A Case Series and Review of the Literature. J Clin Oncol 2011. Available at: http://jco.ascopubs.org/content/early/2011/01/25/JCO.2010.30.9278.sh ort.

351. de Gabory L, Abdulkhaleq HM, Darrouzet V, et al. Long-term results of 28 esthesioneuroblastomas managed over 35 years. Head Neck 2011;33:82-86. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20848423.

352. Bachar G, Goldstein DP, Shah M, et al. Esthesioneuroblastoma: The Princess Margaret Hospital experience. Head Neck 2008;30:1607-1614. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18798301.

353. Dirix P, Nuyts S, Geussens Y, et al. Malignancies of the nasal cavity and paranasal sinuses: long-term outcome with conventional or three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 2007;69:1042-1050. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17570610.

354. Hoppe BS, Stegman LD, Zelefsky MJ, et al. Treatment of nasal cavity and paranasal sinus cancer with modern radiotherapy techniques in the postoperative setting--the MSKCC experience. Int J Radiat Oncol Biol Phys 2007;67:691-702. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/17161557.

355. Chen AM, Daly ME, Bucci MK, et al. Carcinomas of the paranasal sinuses and nasal cavity treated with radiotherapy at a single institution over five decades: are we making improvement? Int J Radiat Oncol Biol Phys 2007;69:141-147. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/17459609.

356. Porceddu S, Martin J, Shanker G, et al. Paranasal sinus tumors: Peter MacCallum Cancer Institute experience. Head Neck 2004;26:322-330. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15054735.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

- 357. Le QT, Fu KK, Kaplan MJ, et al. Lymph node metastasis in maxillary sinus carcinoma. Int J Radiat Oncol Biol Phys 2000;46:541-549. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10701732.
- 358. Al-Mamgani A, Monserez D, Rooij P, et al. Highly-conformal intensity-modulated radiotherapy reduced toxicity without jeopardizing outcome in patients with paranasal sinus cancer treated by surgery and radiotherapy or (chemo)radiation. Oral Oncol 2012;48:905-911. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22584070.
- 359. Dirix P, Vanstraelen B, Jorissen M, et al. Intensity-modulated radiotherapy for sinonasal cancer: improved outcome compared to conventional radiotherapy. Int J Radiat Oncol Biol Phys 2010;78:998-1004. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20338694.
- 360. Hoppe BS, Nelson CJ, Gomez DR, et al. Unresectable carcinoma of the paranasal sinuses: outcomes and toxicities. Int J Radiat Oncol Biol Phys 2008;72:763-769. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18395361.
- 361. Hoppe BS, Wolden SL, Zelefsky MJ, et al. Postoperative intensity-modulated radiation therapy for cancers of the paranasal sinuses, nasal cavity, and lacrimal glands: technique, early outcomes, and toxicity. Head Neck 2008;30:925-932. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18302261.
- 362. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximabinduced rash and survival. Lancet Oncol 2010;11:21-28. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19897418.
- 363. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354:567-578. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/16467544.

- 364. Garden AS, Harris J, Vokes EE, et al. Preliminary results of Radiation Therapy Oncology Group 97-03: a randomized phase II trial of concurrent radiation and chemotherapy for advanced squamous cell carcinomas of the head and neck. J Clin Oncol 2004;22:2856-2864. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15254053.
- 365. Garden AS, Harris J, Vokes EE, et al. Results of Radiation Therapy Oncology Group 97-03—A randomized phase II trial of concurrent radiation and chemotherapy for advanced squamous cell carcinomas of the head and neck: Long-term results and late toxicities [abstract]. Int J Radiat Oncol Biol Phys 2007;69:S140. Available at: http://linkinghub.elsevier.com/retrieve/pii/S036030160701019X?showall=true.
- 366. Fury MG, Pfister DG. Current recommendations for systemic therapy of recurrent and/or metastatic head and neck squamous cell cancer. J Natl Compr Canc Netw 2011;9:681-689. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21636539.
- 367. Molin Y, Fayette J. Current chemotherapies for recurrent/metastatic head and neck cancer. Anticancer Drugs 2011;22:621-625. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21131821.
- 368. Hoffmann TK. Systemic therapy strategies for head-neck carcinomas: Current status. GMS Curr Top Otorhinolaryngol Head Neck

http://www.ncbi.nlm.nih.gov/pubmed/23320055.

Surg 2012;11:Doc03. Available at:

- 369. Jacobs C, Lyman G, Velez-Garcia E, et al. A phase III randomized study comparing cisplatin and fluorouracil as single agents and in combination for advanced squamous cell carcinoma of the head and neck. J Clin Oncol 1992;10:257-263. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1732427.
- 370. Burtness B, Goldwasser MA, Flood W, et al. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

Oncology Group study. J Clin Oncol 2005;23:8646-8654. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16314626.

371. Grau JJ, Caballero M, Verger E, et al. Weekly paclitaxel for platinresistant stage IV head and neck cancer patients. Acta Otolaryngol 2009;129:1294-1299. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/19863327.

372. Guardiola E, Peyrade F, Chaigneau L, et al. Results of a randomised phase II study comparing docetaxel with methotrexate in patients with recurrent head and neck cancer. Eur J Cancer 2004;40:2071-2076. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/15341981.

- 373. Catimel G, Verweij J, Mattijssen V, et al. Docetaxel (Taxotere): an active drug for the treatment of patients with advanced squamous cell carcinoma of the head and neck. EORTC Early Clinical Trials Group. Ann Oncol 1994;5:533-537. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7918125.
- 374. Stewart JS, Cohen EE, Licitra L, et al. Phase III study of gefitinib compared with intravenous methotrexate for recurrent squamous cell carcinoma of the head and neck [corrected]. J Clin Oncol 2009;27:1864-1871. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19289630.
- 375. Forastiere AA, Metch B, Schuller DE, et al. Randomized comparison of cisplatin plus fluorouracil and carboplatin plus fluorouracil versus methotrexate in advanced squamous-cell carcinoma of the head and neck: a Southwest Oncology Group study. J Clin Oncol 1992;10:1245-1251. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/1634913.

376. Haigentz M, Jr., Hartl DM, Silver CE, et al. Distant metastases from head and neck squamous cell carcinoma. Part III. Treatment. Oral Oncol 2012;48:787-793. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/22516376.

377. Degardin M, Oliveira J, Geoffrois L, et al. An EORTC-ECSG phase II study of vinorelbine in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Ann Oncol 1998;9:1103-1107. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/9834823.

- 378. Martinez-Trufero J, Isla D, Adansa JC, et al. Phase II study of capecitabine as palliative treatment for patients with recurrent and metastatic squamous head and neck cancer after previous platinumbased treatment. Br J Cancer 2010;102:1687-1691. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20485287.
- 379. Eschwege F, Sancho-Garnier H, Gerard JP, et al. Ten-year results of randomized trial comparing radiotherapy and concomitant bleomycin to radiotherapy alone in epidermoid carcinomas of the oropharynx: experience of the European Organization for Research and Treatment of Cancer. NCI Monogr 1988:275-278. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2451135.
- 380. Minatel E, Gigante M, Franchin G, et al. Combined radiotherapy and bleomycin in patients with inoperable head and neck cancer with unfavourable prognostic factors and severe symptoms. Oral Oncol 1998;34:119-122. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/9682774.

- 381. Saxman S, Mann B, Canfield V, et al. A phase II trial of vinorelbine in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Am J Clin Oncol 1998;21:398-400. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9708641.
- 382. Martin M, Diaz-Rubio E, Gonzalez Larriba JL, et al. Ifosfamide in advanced epidermoid head and neck cancer. Cancer Chemother Pharmacol 1993;31:340-342. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8422700.
- 383. Vermorken JB, Trigo J, Hitt R, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic

NCCN Guidelines Index Head and Neck Table of Contents Discussion

squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol 2007;25:2171-2177. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17538161.

384. Colevas AD. Chemotherapy options for patients with metastatic or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol 2006;24:2644-2652. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/16763278.

- 385. Forastiere AA, Shank D, Neuberg D, et al. Final report of a phase II evaluation of paclitaxel in patients with advanced squamous cell carcinoma of the head and neck: an Eastern Cooperative Oncology Group trial (PA390). Cancer 1998;82:2270-2274. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9610709.
- 386. Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 2008;359:1116-1127. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18784101.
- 387. Samlowski WE, Moon J, Kuebler JP, et al. Evaluation of the combination of docetaxel/carboplatin in patients with metastatic or recurrent squamous cell carcinoma of the head and neck (SCCHN): a Southwest Oncology Group Phase II study. Cancer Invest 2007;25:182-188. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17530488.
- 388. Gibson MK, Li Y, Murphy B, et al. Randomized phase III evaluation of cisplatin plus fluorouracil versus cisplatin plus paclitaxel in advanced head and neck cancer (E1395): an intergroup trial of the Eastern Cooperative Oncology Group. J Clin Oncol 2005;23:3562-3567. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15908667.
- 389. Browman GP, Cronin L. Standard chemotherapy in squamous cell head and neck cancer: what we have learned from randomized trials. Semin Oncol 1994;21:311-319. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7516093.

- 390. Clavel M, Vermorken JB, Cognetti F, et al. Randomized comparison of cisplatin, methotrexate, bleomycin and vincristine (CABO) versus cisplatin and 5-fluorouracil (CF) versus cisplatin (C) in recurrent or metastatic squamous cell carcinoma of the head and neck. A phase III study of the EORTC Head and Neck Cancer Cooperative Group. Ann Oncol 1994;5:521-526. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7522527.
- 391. Cohen RB. Current challenges and clinical investigations of epidermal growth factor receptor (EGFR)- and ErbB family-targeted agents in the treatment of head and neck squamous cell carcinoma (HNSCC). Cancer Treat Rev 2014;40:567-577. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24216225.
- 392. Machiels JP, Subramanian S, Ruzsa A, et al. Zalutumumab plus best supportive care versus best supportive care alone in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck after failure of platinum-based chemotherapy: an open-label, randomised phase 3 trial. Lancet Oncol 2011;12:333-343. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21377930.
- 393. Guigay J, Fayette J, Dillies A-F, et al. Cetuximab, docetaxel, and cisplatin (TPEx) as first-line treatment in patients with recurrent or metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN): Final results of phase II trial GORTEC 2008-03 [abstract]. J Clin Oncol 2012;30(Suppl 15):Abstract 5505. Available at: http://meeting.ascopubs.org/cgi/content/abstract/30/15_suppl/5505.
- 394. Herbst RS, Arquette M, Shin DM, et al. Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol 2005;23:5578-5587. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16009949.
- 395. Jin Y, Cai XY, Shi YX, et al. Comparison of five cisplatin-based regimens frequently used as the first-line protocols in metastatic nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2012;138:1717-1725. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22684794.

NCCN Guidelines Index Head and Neck Table of Contents Discussion

396. Furniss CS, McClean MD, Smith JF, et al. Human papillomavirus 16 and head and neck squamous cell carcinoma. Int J Cancer 2007;120:2386-2392. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/17315185.

- 397. Fakhry C, Gillison ML. Clinical implications of human papillomavirus in head and neck cancers. J Clin Oncol 2006;24:2606-2611. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16763272.
- 398. Loughrey M, Trivett M, Lade S, et al. Diagnostic application of Epstein-Barr virus-encoded RNA in situ hybridisation. Pathology 2004;36:301-308. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/15370127.

- 399. Yap Y-Y, Hassan S, Chan M, et al. Epstein-Barr virus DNA detection in the diagnosis of nasopharyngeal carcinoma. Otolaryngol Head Neck Surg 2007;136:986-991. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17547993.
- 400. Spiro RH. Salivary neoplasms: overview of a 35-year experience with 2,807 patients. Head Neck Surg 1986;8:177-184. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3744850.
- 401. Bron LP, Traynor SJ, McNeil EB, O'Brien CJ. Primary and metastatic cancer of the parotid: comparison of clinical behavior in 232 cases. Laryngoscope 2003;113:1070-1075. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12782825.
- 402. Nagliati M, Bolner A, Vanoni V, et al. Surgery and radiotherapy in the treatment of malignant parotid tumors: a retrospective multicenter study. Tumori 2009;95:442-448. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19856654.
- 403. Garden AS, Weber RS, Morrison WH, et al. The influence of positive margins and nerve invasion in adenoid cystic carcinoma of the head and neck treated with surgery and radiation. Int J Radiat Oncol Biol Phys 1995;32:619-626. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7790247.

404. Bell RB, Dierks EJ, Homer L, Potter BE. Management and outcome of patients with malignant salivary gland tumors. J Oral Maxillofac Surg 2005;63:917-928. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16003616.

- 405. Copelli C, Bianchi B, Ferrari S, et al. Malignant tumors of intraoral minor salivary glands. Oral Oncol 2008;44:658-663. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17996484.
- 406. Vander Poorten V, Bradley PJ, Takes RP, et al. Diagnosis and management of parotid carcinoma with a special focus on recent advances in molecular biology. Head Neck 2012;34:429-440. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21618326.
- 407. Cederblad L, Johansson S, Enblad G, et al. Cancer of the parotid gland; long-term follow-up. A single centre experience on recurrence and survival. Acta Oncol 2009;48:549-555. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19140053.
- 408. Tanvetyanon T, Qin D, Padhya T, et al. Outcomes of postoperative concurrent chemoradiotherapy for locally advanced major salivary gland carcinoma. Arch Otolaryngol Head Neck Surg 2009;135:687-692. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19620591.
- 409. Laramore GE, Krall JM, Griffin TW, et al. Neutron versus photon irradiation for unresectable salivary gland tumors: final report of an RTOG-MRC randomized clinical trial. Radiation Therapy Oncology Group. Medical Research Council. Int J Radiat Oncol Biol Phys 1993;27:235-240. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/8407397.

410. Ross PJ, Teoh EM, A'Hern R P, et al. Epirubicin, cisplatin and protracted venous infusion 5-Fluorouracil chemotherapy for advanced salivary adenoid cystic carcinoma. Clin Oncol (R Coll Radiol) 2009;21:311-314. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/19201585.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

411. Debaere D, Vander Poorten V, Nuyts S, et al. Cyclophosphamide, doxorubicin, and cisplatin in advanced salivary gland cancer. B-ENT 2011;7:1-6. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/21563549.

- 412. Vermorken JB, Verweij J, de Mulder PH, et al. Epirubicin in patients with advanced or recurrent adenoid cystic carcinoma of the head and neck: a phase II study of the EORTC Head and Neck Cancer Cooperative Group. Ann Oncol 1993;4:785-788. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8280659.
- 413. Licitra L, Cavina R, Grandi C, et al. Cisplatin, doxorubicin and cyclophosphamide in advanced salivary gland carcinoma. A phase II trial of 22 patients. Ann Oncol 1996;7:640-642. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8879381.
- 414. Laurie SA, Ho AL, Fury MG, et al. Systemic therapy in the management of metastatic or locally recurrent adenoid cystic carcinoma of the salivary glands: a systematic review. Lancet Oncol 2011;12:815-824. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21147032.
- 415. Laurie SA, Licitra L. Systemic therapy in the palliative management of advanced salivary gland cancers. J Clin Oncol 2006;24:2673-2678. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16763282.
- 416. Gilbert J, Li Y, Pinto HA, et al. Phase II trial of taxol in salivary gland malignancies (E1394): a trial of the Eastern Cooperative Oncology Group. Head Neck 2006;28:197-204. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16470745.
- 417. Airoldi M, Pedani F, Succo G, et al. Phase II randomized trial comparing vinorelbine versus vinorelbine plus cisplatin in patients with recurrent salivary gland malignancies. Cancer 2001;91:541-547. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11169936.
- 418. Chau NG, Hotte SJ, Chen EX, et al. A phase II study of sunitinib in recurrent and/or metastatic adenoid cystic carcinoma (ACC) of the salivary glands: current progress and challenges in evaluating

molecularly targeted agents in ACC. Ann Oncol 2012;23:1562-1570. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22080184.

- 419. Marcus DM, Marcus RP, Prabhu RS, et al. Rising incidence of mucosal melanoma of the head and neck in the United States. J Skin Cancer 2012;2012:231693. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23251803.
- 420. McLaughlin CC, Wu XC, Jemal A, et al. Incidence of noncutaneous melanomas in the U.S. Cancer 2005;103:1000-1007. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15651058.
- 421. Chang AE, Karnell LH, Menck HR. The National Cancer Data Base report on cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past decade. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer 1998;83:1664-1678. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/9781962.

- 422. Bachar G, Loh KS, O'Sullivan B, et al. Mucosal melanomas of the head and neck: experience of the Princess Margaret Hospital. Head Neck 2008;30:1325-1331. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18704964.
- 423. McLean N, Tighiouart M, Muller S. Primary mucosal melanoma of the head and neck. Comparison of clinical presentation and histopathologic features of oral and sinonasal melanoma. Oral Oncol 2008;44:1039-1046. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18396446.
- 424. Patel SG, Prasad ML, Escrig M, et al. Primary mucosal malignant melanoma of the head and neck. Head Neck 2002;24:247-257. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11891956.
- 425. Meleti M, Leemans CR, de Bree R, et al. Head and neck mucosal melanoma: experience with 42 patients, with emphasis on the role of postoperative radiotherapy. Head Neck 2008;30:1543-1551. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18704960.

NCCN Guidelines Index
Head and Neck Table of Contents
Discussion

- 426. Douglas CM, Malik T, Swindell R, et al. Mucosal melanoma of the head and neck: radiotherapy or surgery? J Otolaryngol Head Neck Surg 2010;39:385-392. Available at:
- http://www.ncbi.nlm.nih.gov/pubmed/20643003.
- 427. Gavriel H, McArthur G, Sizeland A, Henderson M. Review: mucosal melanoma of the head and neck. Melanoma Res 2011;21:257-266. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21540752.
- 428. Temam S, Mamelle G, Marandas P, et al. Postoperative radiotherapy for primary mucosal melanoma of the head and neck. Cancer 2005;103:313-319. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15578718.
- 429. Trotti A, Peters LJ. Role of radiotherapy in the primary management of mucosal melanoma of the head and neck. Semin Surg Oncol 1993;9:246-250. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8516612.
- 430. Ang KK, Peters LJ, Weber RS, et al. Postoperative radiotherapy for cutaneous melanoma of the head and neck region. Int J Radiat Oncol Biol Phys 1994;30:795-798. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7960981.
- 431. Agrawal S, Kane JM, 3rd, Guadagnolo BA, et al. The benefits of adjuvant radiation therapy after therapeutic lymphadenectomy for clinically advanced, high-risk, lymph node-metastatic melanoma. Cancer 2009;115:5836-5844. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19701906.
- 432. Burmeister BH, Henderson MA, Ainslie J, et al. Adjuvant radiotherapy versus observation alone for patients at risk of lymph-node field relapse after therapeutic lymphadenectomy for melanoma: a randomised trial. Lancet Oncol 2012;13:589-597. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22575589.

- 433. Moore ES, Martin H. Melanoma of the upper respiratory tract and oral cavity. Cancer 1955;8:1167-1176. Available at: http://www.ncbi.nlm.nih.gov/pubmed/13270234.
- 434. Moreno MA, Roberts DB, Kupferman ME, et al. Mucosal melanoma of the nose and paranasal sinuses, a contemporary experience from the M. D. Anderson Cancer Center. Cancer 2010;116:2215-2223. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20198705.
- 435. Benlyazid A, Thariat J, Temam S, et al. Postoperative radiotherapy in head and neck mucosal melanoma: a GETTEC study. Arch Otolaryngol Head Neck Surg 2010;136:1219-1225. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21173371.
- 436. Saigal K, Weed DT, Reis IM, et al. Mucosal melanomas of the head and neck: the role of postoperative radiation therapy. ISRN Oncol 2012;2012:785131. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22577582.
- 437. Owens JM, Roberts DB, Myers JN. The role of postoperative adjuvant radiation therapy in the treatment of mucosal melanomas of the head and neck region. Arch Otolaryngol Head Neck Surg 2003;129:864-868. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12925346.
- 438. Gilligan D, Slevin NJ. Radical radiotherapy for 28 cases of mucosal melanoma in the nasal cavity and sinuses. Br J Radiol 1991;64:1147-1150. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1773274.
- 439. Shibuya H, Takeda M, Matsumoto S, et al. The efficacy of radiation therapy for a malignant melanoma in the mucosa of the upper jaw: an analytic study. Int J Radiat Oncol Biol Phys 1993;25:35-39. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8416880.
- 440. Wada H, Nemoto K, Ogawa Y, et al. A multi-institutional retrospective analysis of external radiotherapy for mucosal melanoma of the head and neck in Northern Japan. Int J Radiat Oncol Biol Phys

NCCN Guidelines Index Head and Neck Table of Contents Discussion

2004;59:495-500. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15145168.

441. Bonnen MD, Ballo MT, Myers JN, et al. Elective radiotherapy provides regional control for patients with cutaneous melanoma of the head and neck. Cancer 2004;100:383-389. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14716775.

442. Ballo MT, Bonnen MD, Garden AS, et al. Adjuvant irradiation for cervical lymph node metastases from melanoma. Cancer 2003:97:1789-1796. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12655537.

443. Wu AJ, Gomez J, Zhung JE, et al. Radiotherapy after surgical resection for head and neck mucosal melanoma. Am J Clin Oncol 2010:33:281-285. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19823070.

444. Seetharamu N, Ott PA, Pavlick AC. Mucosal melanomas: a casebased review of the literature. Oncologist 2010;15:772-781. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20571149.

445. Narasimhan K, Kucuk O, Lin HS, et al. Sinonasal mucosal melanoma: a 13-year experience at a single institution. Skull Base 2009:19:255-262. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20046593.

446. Hodi FS, Corless CL, Giobbie-Hurder A, et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol 2013;31:3182-3190. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/23775962.

447. Guo J, Si L, Kong Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol 2011;29:2904-2909. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21690468.

448. Carvajal RD, Spencer SA, Lydiatt W. Mucosal melanoma: a clinically and biologically unique disease entity. J Natl Compr Canc Netw 2012:10:345-356. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22393195.

449. Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a therapeutic target in metastatic melanoma. JAMA 2011;305:2327-2334. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21642685.

450. Torres-Cabala CA, Wang WL, Trent J, et al. Correlation between KIT expression and KIT mutation in melanoma: a study of 173 cases with emphasis on the acral-lentiginous/mucosal type. Mod Pathol 2009;22:1446-1456. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19718013.

451. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 2006;24:4340-4346. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16908931.

452. Turri-Zanoni M, Medicina D, Lombardi D, et al. Sinonasal mucosal melanoma: Molecular profile and therapeutic implications from a series of 32 cases. Head Neck 2013;35:1066-1077. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22791410.